DOI: https://doi.org/10.38027/ICCAUA2023EN0003

LULC geospatial OLI/Landsat -7 -8 -9 analysis of Sitakunda Container Depot: MLE and Kappa accuracy for Coastal Urban Sprawl and Infrastructure Change.

Ing. Arch. Salvatore Polverino¹, Arch. Antonio Coppola²

Dipartimento Formazione ed Internazionalizzazione, Ordine Architetti Pianificatori Paesaggisti Conservatori di Napoli e Provincia, Napoli, Italy E-mail : formazione@napoli.archiworld.it ^{1,2}, polverinosalvatore@outlook.com ¹

Abstract

The extent of this research aims to demonstrate a Land Use/Land Cover (LULC) change over a coastal-industrial area of Sitakunda, part of Chittagong region in Bangladesh. Its reference information has included important drivers for this industrial area of 4.00 km², that highlight its suburban growth that uncontrollably has disaggregated the rural landscape, in a period ranging from 2009 to 2022. Our geospatial analysis has started with the observation of the BM Container Warehouse, that has been recently interested by a dreadful fire.

Supervised Maximum Likelihood classifier has been yearly applied, with regard of six landscape drivers that were interpretated as: Built Up (BU) Terminal, BU Infrastructure, BU Other Deports, BU Ancillary/Generic, Vegetation/Barren Land and Forest. The Landsat/OLI (Operational Land Imager -7 -8 -9 programs) based sampling of 117 ground points on the basis of Google Earth's Imagery, has provided different level 1 land cover records, with the advantage of a 15 meters panchromatic definition. Kappa (K) coefficients have also coordinated our geospatial investigation: (1) for BM commercial expansion, a 0.84 % larger than the initial perimeter of construction (2009-July 2022), a 8.79 % (2014-July 2022), a 2.12 % (2017-July 2022); (2) for the general BU Infrastructure, important ramifications, broader than they seemed at first glance, increased by a 3.39 % (2009-July 2022); (3) for BU Other Depots rise, 9.64 % (2014-July 2022); (4) for BU Ancillary escalation, an amplified increase by 19.53 % (2009-July 2022); subsequently we assessed the diminishing of Vegetation/Barren land, -2.61 % (2009-July 2022) together with the Forest, 0.15 %, during the same period. Preceding this object-based classification, other accuracy statistics, highlighted by Pearson correlation, have showed us partial inconsistencies (class a <0.30 r²)affecting certain coastal features, e.g. Ancillary two-year 2013-2014 [275.18, -217.22 %], yearly interested by monsoon seasons, so that our ground-truth references did not fully meet the percentual integrity within K and Overall Accuracy (OA) $q_{1/4}^{-} q_{1/3}^{-}$

thresholds [47.59, 94.54 %], and [47.59, 95.68 %]. Pattern irregularity of the Indian-bengali Landscape Architecture (LA) has been conclusively interpretated with regard of the infrastructure variation, as an integral part of Life Cycle Assessment (LCA), using the minimum Euclidean distance, by iterating such Unsupervised Classification clustering procedure, between the most convenient pre-date 2022 fire OLI dataset (May), and the earliest post-date fire (July). The research, apart from the validation study, has also listed the inter-class spectral separability analysis, herewith yearly distributed, based on the Maximum Likelihood Classification (MLE) Composite bands classification and its firms, in correlation with related linear regression, resulting from the early LA stage of approach.

Keywords: International Safety Management Code; Digital forensics; LULC; Remote sensing; Fire Risk; Life Cycle Assessment (LCA); Environmental Impact Assessment (EIA); Strategic Environmental Assessment (SEA): Port area; Logistics; Coastal settlements; Habitat II United Nations.

1. Introduction

1.1. Causes of ignition: fire, explosions and casualties

The region of interest of our case study, is limited to a peri-urban rectangular boundary, in Sitakunda, Chittagong region of Bangladesh; the extension amounts to nearly 4.00 square km, with the exclusion of the adjacent seawaters. BM sub-area covers an area of round about 92,644 m², with a perimeter of 1,242 meters, localized at 91°70'00 Long 22°47'00 Lat, according to the local UTM for Bangladesh. The purpose of our department research is partially aimed to follow an emerging Wildland-Urban Interface (WUI) model (McNamara et Mell, 2022) in order to produce, surveyal and/or remote-sensed/airborne consistency, backed up by statistical reporting, aimed to the technical identification of those surface variations with regard of building destruction, fire behavior and LA defensive actions (Mohamed A. et al., 2022). The combustion was estimated to have started with the unpredictable reaction of igneous garments and chemicals at 21:00 BST (15:00 UTC) following a first explosion at 23:45 BST (17:45 UTC), in the matter of fireballs debris. The object of ignition was detected by the Bangladesh Fire Service & Civil Defense, as to be highly flammable garments and chemicals (Wadud Z. et al., 2014). In last instance the forensics (Kuveždić D. et al., 2020), operated by Bangladesh's fire service, concluded by confirming that the unpredictable spread was initiated by hydrogen peroxide presence, stored in several slots around the terminal. The bidimensional design of this highly density Terminal, did not consent an urgent search & rescue (SAR) (Barua U. et al., 2018), due to the narrowness of its unique entrance, with the paralysis of complex operational units' vehicles, suffocated by the stagnation of deadly

smoke curtains. Firefighters' anxiety, herewith trapped in a such urban congestion (Saini V., 2020), caused improper decisional choices by extinguishing normal water in a D-class scenario (European Committee for Standardization -CEN), characterized by metallic substances (i.e., sodium, potassium, aluminum), rather than special dusty fireproof matters.

Figure 1. Pre-date fire entrance: unique gateway of access.

Figure 2. Pre-date fire goods: heterogeneity of sorting.

Figure 3. Pre-date fire Ro-Ro gateway:

unique provincial road.

Figure 4. Post-date fire Terminal rogue: Figure 5. Post-date fire Firefighters: improper decisional unawareness. usage of Water.

Figure 6. Post-date fire Terminal: water bowls scattered on site.

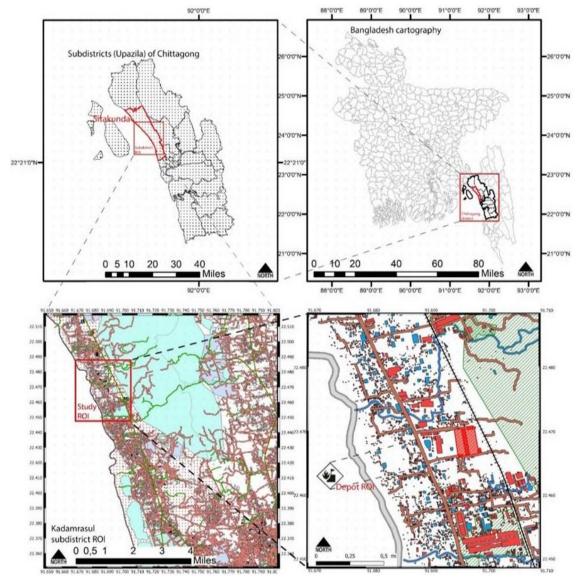


Figure 7. Mosaic of Geographic Information System (GIS) chartography to illustrate this survey case investigation.

BU Terminal

The rectangular shaped covered roof warehouse that constitutes the core of this BM Container Depot Limited Terminal. This land-cover has a specific accountability with regard of this case study.

BU Infrastructure All metal and asphalt covered areas that determine the entropy of such anthropic activities. The heterogeneity of this type includes piles of industrial spare parts as well as fishing and farming machineries, apart from Kashem Jute

Mills Ltd.

BU Other Depots All covered areas belonging to industrial stakeholders, secondarily accounted for

secondarily accounted for this case study: Abul Khair Steel Industries, AKSML Power Substation, Arif, Shema Oxygen Oxico Ltd, Infinia Composite Textiles Ltd and Infinia Spinning Mills.

BU Ancillary/Generic Purpose All covered spaces

All covered spaces attributed to fragmented residential/processing/t ertiaty sector based edifices, with the inclusion of adjacent yards and heterogeneous pieces of machineries.

Vegetation/Barren land

All Grass, sand covered areas with the supervised classification of natural grassland (i.e. shrubs and swamps) together with productive soil.

Forest All forestry covered areas with the supervised classification of both spontaneous planted woodland and wild timber land.

Table 1. LULC Categorization.

Figure 8. BU Core Terminal.

Figure 11. AKSPL Steel Industry.

Figure 14. Main avenue and its infrastructural sprawl.

Figure 9. BU Depot Terminal.

Figure 12. Barren coastal land.

Figure 15. Infrastructural sprawl and its entropy.

Figure 10. BU Terminal and adjacent railway.

Figure 13. Coastal settlement obje

Figure 16. Vegetation mixed use, also subtracted by the Forest canopy.

1.2. Final Report, 2018, and Dangerous Cargoes Act V, 1953.

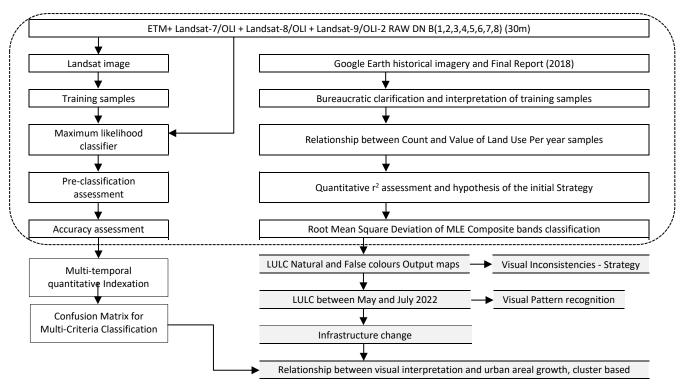
In the history of the country, we accounted two main documents that set the basis of a respectful and modern urban discipline in Bangladesh, with regard of logistical, operational and storage of dangerous cargoes, In first instance the Dangerous Cargoes, signed in 1953, followed by a Data Collection Survey (Nippon K. et al., 2018) set an extensive groundwork, structurally engineered in favour of a modern Bangladesh: Energy sector has been mainly addressed to domestic natural gas, in the matter of the national "back-born" of priority significance, followed by a general declining demand of production so that the actual stakeholders will learn how to differentiate the production chains in the immediate future according to EU legislations (Islam D. et al., 2022, Rahman K, 2021, Razzaque M. et al., 2019, Amen, 2021).

In this paragraph, we decided to underline the executive briefing by two Japanese authorships, signed by Nippon Koei Co., Ltd. and Chiyoda U-tech Co., Ltd, due to a power station presence allocated within the projected ROI, in parallel with the ultimation of its adjacent steel industrial heavy complex. The research (2009-2022) visualizes auxiliary pipelines in progress, that are part of the Network Infrastructure Management System, sub-part of Power Sector Master Plan 2016. The distribution systems for liquified natural gas (LNG) introduction, is clearly demonstrated with the Chapter 5, and ruled by the Ministry of Power, Energy and Mineral Resources (MoPEMR), subdivided into: 1) Energy and Mineral Resources Division (EMRD), and 2) Power Division (PD). The latter was reviewed in six bodies: I) Power Cell; II) Bangladesh Power Development Board (BPDB); III) Bangladesh Rural

Electrification Board (BREB); IV) Power Grid Company of Bangladesh (PGCB); V) Distribution companies; VI) Power generation companies.

The substation herewith sensed, relies on the Karnaphuli Gas Distribution Company Limited (KGDCL), whose effort currently is aimed to the development of a Maintenance culture in Bangladesh (Department of Sociology, 2018), together with the fire prevention; both disciplines lack of awareness with alarming concern (The Hazardous Wastes and Shipbreaking Waste Management Rules, 2011), and determined two factors in our research: the first is remarkable issued by the uncontrolled urban sprawl of the naval-coastal settlement (Alam S. et al., 2014, Rahman K. et al., 2019, Thron C. et al., 2015), also generating "impromptu" in the matter of ship breaking yards (Abdullah et al., 2013, Tuhin T. et al., 2020, Amen & Nia, 2020) and the eradication of ancillary cover type in occasion of monsoon seasons (Uddin K. et al., 2003); whilst the second tendency was benchmarked with higher index accuracy percentage values, over an exponential upgrade of other industrial facilities, sampled on the basis of bluish roof colour, infrastructures (Bangladesh University, 2012), i.e. roads, metallic surfaces also including the adjacent warehouse to the BM Terminal, and ancillary general built up (residential) cover type. Vegetation and Forest classes have seen an overall diminishing, so that we also included climate resilient and participatory reforestation projects (Bangladesh Forest Department, 2016). With specific regard of the Power Station, the study limited the geospatial analysis to the level 1 LULC, because of the high handwork to assess such an extensive area, in a temporal range, covering over a decade of transformations; the effort herewith demonstrated, was partially also dedicated to the displacing of technical types of accuracy information. Indeed, following in-depth levels might benchmark smaller scales of sensing. According to these limits of research, the 15 meters definition level 1, consented us to confine the careful excavation site around the substation; to mention Final Report (2018): "These pipeline systems need to be monitored and investigated carefully and need to be replaced with appropriate materials to avoid potential rupture case"- "These pipeline systems need to be monitored and investigated carefully and need to be replaced with appropriate materials to avoid potential rupture case" - Design Classification: "Design classification is related to thickness of pipe, specified according to population. Current population and future development plan need to be considered prior to decide classification and determined during Environmental Impact Assessment (EIA)" - Soil Resistivity: "CP system may differ to the soil resistivity and condition. Data should be prepared and verified as part of EIA".

An infrastructural improvement has impacted positively around the peri-urban industrial complex, by expanding the need of standardization (People's Republic of Bangladesh Ministry of Power, Energy and Mineral, 2018) in favour of the: 1a) Civil sector (Road, Railway, Cable/Pipeline, Water Course, River, River Crossing); 1b) Site Construction sector (Road, Pavement, Boundary Wall and Gate, Fence, Trench, Drainage, Concrete Foundations, Valve Pit, Valve Pit Cover, Pig Trap Foundation); 2) Piping (Pipe Support Standard, Welding Details, Scraper Trap, Pig Launcher and Receiver, Scraper Signaler, Vent and Drain Piping at Valve Station); 3) Instrumental sector; 4) Electrical sector; 5) Grounding Ion System sector. At page 48 of the report, an intermodal Gas Operation Mode to Demand Base is also conceptualized, with three out-puts from the LNG framework: 1) Power Plant and City Gas/Transport/Industry; 2) Cities; 3) Cities/Power Plant. The concern is aimed to the prevention of bottlenecks, losses, general corrosion/ground stability. Another Level 1/Documental limit, consist of the impossibility to determining whether certain industries are connected via virtual database or not. In the future this linkage would be presumably extended also to residential and minor stakeholders, as the Power Sub-Division Organization aims to, by promoting "public-private partnership, private investment rural electrification and renewable energy, and energy efficiency and conservation". The most tangible example of this bottom-up (Islam N. et al., 2022) positive impact, is the Bangladesh Rural Electrification Board (BREB, here BPDB South Zone) est. in 1977, in 2016 including over 14 million customers in the country.


The oldest report herewith considered, is the Dangerous Cargoes Act V, est. in 1953 (provided by: FAO/FAOLEX/ECOLEX Database, Food and Agriculture Organization of the United Nations) whose jurisdiction was extended exclusively to the pertinent territory of Bangladesh. The novel importance, at that time, was referred to the fact that: 1) "any goods shown as Explosives in the Comprehensive Classified List of Government Explosives compiled and issued by the Government or by such authority as the Government may determine from time to time or any ammunitions; or (b) petroleum, as defined in clause (a) of section 2 of the Petroleum Act, 1934, when the flashing point of such petroleum is below one hundred and fifty degrees Fahrenheit" -2) "Fortress Commander" means an officer of the armed forces appointed as such by the Government by a notification in the official Gazette -3) "The Government may make such orders as appear to it to be necessary or expedient for securing the safety of any port and preventing or dealing with explosions and fires on vessels carrying dangerous cargoes within the limits of any port, and generally for the transit working and storage of dangerous cargoes and matters incidental".

2. Methodology

2.1. Workflow

The basic strategy of this urban pattern recognition is to assess LULC visually and quantitatively with the implementation of the Esri© package (Hussain S. et al., 2022, Saha P. et al., 2022, Aziz Amen, 2022, Amen et al.,

2023), grouping sample data and putting them into practice with traditional algorithm land cover classified maps (Acharya T. et al., 2018). Each year is selected according to the criteria that do not affect from the cloud also considering the monsoon season, we hence moved into preferring the winter period. To maintain validity of the targeted sites, we used the blue, green, red, near-infrared (NIR) bands for image classification. The following stacks present three columns: 1) a color composites raster (R: Red band, B: Blue band, G: Green band), 2) a 5-1-3 combination, 3) the resulting LULC model. At this current stage, the department is focused on kappa accuracy methodology, we hence assumed to propose a visual graphic and quantitative set of information, that cover this area of research in the built and rural environment. Locations have been all set within the same frame in ArcGIS software as well as the accuracy points that amount between 115 and 117 per year, and mainly allocated in correspondence to the BM Terminal. The criteria necessary to produce their producer accuracy validation (Humayun K., 2012) a have seen the consulting of Google Earth Pro historical imagery, with 1610 validation samples, 14 User Accuracy Confusion matrixes, 14 Producer Accuracy Confusion matrixes, always accounting both six reference and classified data. In the very end of this dissertation, we concluded to confront, via Unsupervised classification, the infrastructure areal change, (Wang R. et al., 2021) by setting the pre- and post-date fire LULC maps (Polverino S., 2022) both presenting a solid Kappa and Overall percentage also supported by correctly classified and reference pixels, as the auxiliary inputs due to their relative consistency to the premise model before aforementioned. The visual consistency generated a large set of clusters, (Matlhodi B. et al., 2019) that match with the differenced LULC and let us comprehend which actions by local inhabitants were taken, in the exact period occurring after the fire of BM Terminal.

Figure 17. Flow diagram of the image processing and its statistical analysis techniques. The proposed geospatial approach has taken into account both Supervised and Unsupervised Classification methods. Apart the spectral and quantitative analysis, we accounted a selection of qualitative approaches that are addressed to the discipline of Landscape Architecture for our department.

Table 2. Landsat data used in this study (https://	/landsat.gsfc.nasa.gov/appendix/references).

	Bands		Spatial Resolution (m)	Wavelength (µm)	
andsat 7 Enhanced Thematic Mapper Plus (ETM+) Landsat 8/9 OLI	1	Blue	30	0.45-0.52	
	2	Green	30	0.52-0.60	
and at 7 Fallen and Thematic	3	Red	30	0.63-0.69	
Landsat 7 Enhanced Thematic Mapper Plus (ETM+)	4	Near Infrared (NIR)	30	0.77-0.90	
	5	Shortwave Infrared SWIR 1	30	1.55-1.75	
	6	Thermal	60* (30)	10.40-12.50	
	7	Shortwave Infrared (SWIR) 2	60	2.09-2.35	
	8	Panchromatic	15	.5290	
	1	Ultra-Blue (coastal/aerosol)	30	0.435 - 0.451	
	2	Blue	30	0.452 - 0.512	
Mapper Plus (ETM+)	3	Green	30	0.533 - 0.590	
	4	Red	30	0.636 - 0.673	
	5	Near Infrared (NIR)	30	0.851 - 0.879	
	6	Shortwave Infrared (SWIR)	30	1.566 - 1.651	
	7	Shortwave Infrared (SWIR) 2	30	2.107 - 2.294	
	8	Panchromatic	15	0.503 - 0.676	

ID	Image Name	Path	Row	Year	Month	Day	Cloud coverage
1	LE07_L1TP_136045_20091214_20200911_02_T1	136	045	2009	12	14	3.00
2	LE07_L1TP_136045_20101217_20200910_02_T1	136	045	2010	12	17	0.00
3	LE07_L1TP_136044_20111204_20200909_02_T1	136	044	2011	12	04	32.00
4	LE07_L1TP_136044_20121206_20200908_02_T1	136	044	2012	12	06	3.00
5	LC08_L2SP_136045_20131030_20200912_02_T1	136	045	2013	10	30	1.23
6	LC08_L2SP_136044_20141220_20200910_02_T1	136	044	2014	12	20	1.65
7	LC08_L2SP_136045_20151223_20200908_02_T1	136	045	2015	12	23	0.02
8	LC08_L2SP_136045_20161225_20200905_02_T1	136	045	2016	12	25	1.48
9	LC08_L1TP_136044_20171126_20200902_02_T1	136	045	2017	12	28	5.66
10	LC08_L2SP_136045_20181231_20200830_02_T1	136	045	2018	12	31	0.01
11	LC08_L2SP_136045_20191218_20201023_02_T1	136	045	2019	12	18	0.68
12	LC08_L2SP_13604 4_20201204_2021 0313_02_T1	136	044	2020	12	04	1.97
13	LC09_L2SP_136045_20211215_20220120_02_T1	136	045	2021	12	15	9.20
		Pre-date Fire Assessment					
14	LC08_L2SP_136045_20220516_20220519_02_T1	136	045	2022	05	16	79.80
		Post-date Fire Assessment					
15	LC09 L2SP 136045 20220727 20220729 02 T1	136	045	2022	07	27	9.65

Fable 3. Summary of Landsat datasets performed to carry out the analysis.



Figure 18. LULC User points, July 2022.

Table 4.	Summary	of input sam	ples.

Class	Visual consistency	N°	Year
BU Terminal [1]	Red metallic roof	9	2011
BU Infrastructure [2]	Metallic surfaces (including open structures with raw goods, i.e. landfills).	22	2009
BU Other Depots [3]	Blue metallic surfaces of the steel industry, its satellite structures.	18	2009
BU Ancillary/Generic [4]	Grey structures consisting in residential et similia.	33	2009
BU Vegetation/Barren [5]	Bright green or soil without shadows, agricultural/wild.	16	2009
BU Forest [6]	Battered green with shadows, also riverside.	17	2009

2.2. Non-linear correlation in addition to a preliminary insight.

The visualization of linear regression from the resulting LULC outputs, has been considered in a 2017 paper (Tran, D. X. et al., 2017); herewith, the authors underline its general tendency to the future prediction of the following morphology heterogeneity together with the land cover data variability (Feizizadeh B. et al., 2022, Cai G. et al., 2019, Foody G. et al., 2010, 2020). Therefore, we grouped four value thresholds in relation to LULC changes, to allocate the suitable LA strategies (Rosenfield G. H. et al., 1986) to be interpretated (Congalton R. et al., 1983, 2001), as the impact mitigator guidelines of the urban acknowledges, yearly listed as follows.

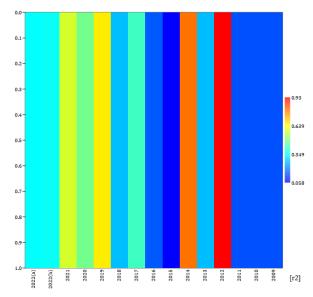
Table 5.1 Relationship between Count and Value of Land Use Land Cover per year samples.

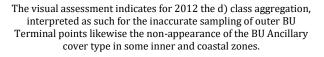
Data	Classification method	Cover types	Equation	Linear regression [r ²]	Strategy
LE07_L1TP_136 045_20091214_2 0200911_02_T1	Pixel-based method	Built Up Terminal Built Up Infrastructure Built Up Other Depots Built Up Ancillary/Gen. Vegetation/Barren land Forest	y = 10.9 + 0.0066 x	0.15	(Casamonti M., 2006) (Pontius G. et al., 2011) (Nippon K. et al., 2018) (Saini V. et al., 2020) (Islam N. et al., 2022) (McNamara D. et al., 2022) (Mohamed A. et al., 2022)
LE07_L1TP_136 045_20101217_2 0200910_02_T1	Pixel-based method	Built Up Terminal Built Up Infrastructure Built Up Other Depots Built Up Ancillary/Gen. Vegetation/Barren land Forest	y = 10.9 + 0.0066 x	0.15	(The Hazardous [], 2011) (Dip. Tutela Acque, 2022) (Saini V. et al., 2020)
LE07_L1TP_136 044_20111204_2 0200909_02_T1	Pixel-based method	Built Up Terminal Built Up Infrastructure Built Up Other Depots Built Up Ancillary/Gen. Vegetation/Barren land Forest	y = 10.9 + 0.0066 x	0.15	(Saini V. et al., 2020)

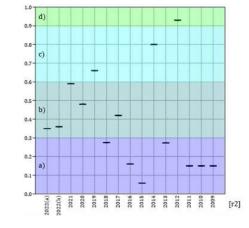
	-				
LE07_L1TP_136 044_20121206_2 0200908_02_T1	Pixel-based method	Built Up Terminal Built Up Infrastructure Built Up Other Depots Built Up Ancillary/Gen. Vegetation/Barren land Forest	y = -36.6 + 25.9 x	0.93	(Saini V. et al., 2020) (Islam N. et al., 2022)
LC08_L2SP_136 045_20131030_2 0200912_02_71	Pixel-based method	Built Up Terminal Built Up Infrastructure Built Up Other Depots Built Up Ancillary/Gen. Vegetation/Barren land Forest	y = 44.6 + 0.0101 x	0.273	(Saini V. et al., 2020) (Islam N. et al., 2022)
LC08_L2SP_136 044_20141220_2 0200910_02_T1	Pixel-based method	Built Up Terminal Built Up Infrastructure Built Up Other Depots Built Up Ancillary/Gen. Vegetation/Barren land Forest	y = 1.42 + 0.025 x	0.8	(Rahman A. et al., 2019) (Saini V. et al., 2020) (Islam N. et al., 2022)
LC08_L2SP_136 045_20151223_2 0200908_02_T1	Pixel-based method	Built Up Terminal Built Up Infrastructure Built Up Other Depots Built Up Ancillary/Gen. Vegetation/Barren land Forest	y = 76.8 + 0.009 x	0.058	(Saini V. et al., 2020) (Islam N. et al., 2022)
LC08_L2SP_136 045_20161225_2 0200905_02_T1	Pixel-based method	Built Up Terminal Built Up Infrastructure Built Up Other Depots Built Up Ancillary/Gen. Vegetation/Barren land Forest	y = 34.5 + 0.014 x	0.16	(Saini V. et al., 2020) (Islam N. et al., 2022)
LC08_L1TP_136 044_20171126_2 0200902_02_T1	Pixel-based method	Built Up Terminal Built Up Infrastructure Built Up Other Depots Built Up Ancillary/Gen. Vegetation/Barren land Forest	y = 49.7 + 0.0163 x	0.42	(Rosenfield H., et al., 1986) (Saini V. et al., 2020) (Wang R. et al., 2021) (Islam N. et al., 2022)
LC08_L2SP_13604 5_20181231_2020 0830_02_T1	Pixel-based method	Built Up Terminal Built Up Infrastructure Built Up Other Depots Built Up Ancillary/Gen. Vegetation/Barren land Forest	y = 23.3 + 0.0142 x	0.275	(Rahman A. et al., 2019) (Saini V. et al., 2020) (Islam N. et al., 2022)
LC08_L2SP_13604 5_20191218_2020 1023_02_T1	Pixel-based method	Built Up Terminal Built Up Infrastructure Built Up Other Depots Built Up Ancillary/Gen. Vegetation/Barren land Forest	y = 0.086 + 0.0138 x	0.66	(Abdullah H. et al., 2013) (Alam S. et al., 2014) (Saini V. et al., 2020) (Islam N. et al., 2022)

Table 5.2 Relationship between Count and Value of Land Use Land Cover per year samples.

Data	Classification method	Cover types	Equation	Linear regression [r ²]	Strategy
LC08_L2SP_13604 4_20201204_2021 0313_02_T1	Pixel-based method	Built Up Terminal Built Up Infrastructure Built Up Other Depots Built Up Ancillary/Gen. Vegetation/Barren land Forest	y = 15.9 + 0.0105 x	0.48	(Abdullah H. et al., 2013) (Alam S. et al., 2014) (Saini V. et al., 2020) (Islam N. et al., 2022)
LC09_L2SP_13604 5_20211215_2022 0120_02_T1	Pixel-based method	Built Up Terminal Built Up Infrastructure Built Up Other Depots Built Up Ancillary/Gen. Vegetation/Barren land Forest	y = -3,35 + 0,024 x	0.59	(Uddin K. et al., 2003) (Abdullah H. et al., 2013) (Alam S. et al., 2014) (Saini V. et al., 2020) (Dip. Tutela Acque, 2022) (Islam N. et al., 2022)
LC08_L1TP_13604 4_20220516_2022 0519_02_T1	Pixel-based method	Built Up Terminal Built Up Infrastructure Built Up Other Depots Built Up Ancillary/Gen. Vegetation/Barren land Forest	y = 14,4 + 0,012 x	0.36	(Abdullah H. et al., 2013) (Alam S. et al., 2014) (Razzaque M. et al., 2019) (Kuveždić D. et al., 2020) (Rahman K. et al., 2021) (Islam N. et al., 2022) (Polverino S., 2022)


04 22	Pixel-based method	Built Up Terminal	y = 39.2 + 0.03 x	0.35	(Casamonti M., 2006)	
3604		Built Up Infrastructure			(Abdullah H. et al., 2013)	
		Built Up Other Depots			(Alam S. et al., 2014)	
2SF 72 . T		Built Up Ancillary/Gen.			(Wadud Z. et al., 2014)	
C09_L2SP_1 20220727_ 729_02_T1		Vegetation/Barren land			(Tran D. et al., 2017)	
202		Forest			(Kuveždić D. et al., 2020)	
01.2					(Islam N. et al., 2022)	


2.3. Root Mean Square Deviation


The Root Mean Square Deviation (RMSD) computed over the LULC values, have indexed the square root of the second sample moment of the differences, occurring amongst predicted values and observed values or the quadratic mean of these differences. The statistical RMSD indicates always non-negative achieved when it comes down to it and it consented to get an initial accuracy of spatial analysis.

 $RMSE = \sqrt{\sum_{i=1}^{n} (\hat{y}_i - y_i)^2 * 1/n}$; whereby $\hat{y}_1, \hat{y}_2, \dots, \hat{y}_n$ predicted values $\hat{y}_1, \hat{y}_2, \dots, \hat{y}_n$ observed values

n number of observations

Referenced classes aggregated:

a) 2018, 2016, 2015, 2013, 2011, 2010, 2009; $0.00{<}a{<}0.30.$

b) 2022(a), 2022(b), 2021, 2020, 2017; 0.30<b<0.60.

c) 2019, 2014; 0.60<c<0.90.

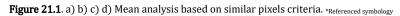

d) 2012; 0.90<d<1.00.

Figure 19-20. Linear regression thresholds and their a	accountability to the theories	of Landscape Architecture.
--	--------------------------------	----------------------------

Cover types	Bands	Data	Mean	Std.dev Data	Mean	Std.dev Data	Mean	Std.dev Data	Mean	Std.dev
Built Up	1		49.79	3.46	58.54	3.81	56.07	1.81	53.48	3.06
Terminal	2	<u>+</u> _2	41.86	3.60	52.01	3.96 🚆	44.31	1.17 🖓	42.41	3.02
	3	214	45.58	4.73	62.07	6.20 8	46.49	1.64 🕺	47.48	4.72
	4	912	72.64	2.97	92.06	4.78	78.38	2.15	73.88	4.68
	5	00 11	81.45	8.37 🗄 🖽	125.64	15.29 등 문	113.56	10.17 🗧 🗹	103.51	19.87
	6	5.7	132.29	0.02 N	138.29	1.18 🔨 💊	136.67	1.65 📉 💊	138.3	2.10
	7	045 1_0	68.42	8.26 0.93 8.26	107.98	16.77 4 6	109.28	10.51 7 👷	95.86	20.89
Built Up	1	36	39.83		48.37	12.49 8 6	50.22	2.66 8060	46.92	2.61
nfrastructure	2	P_1 200	30.03	6.04 E 5.84 L 5.84 L	39.41	14.18 2 8	38.35	2.66 98 10 2.34 J	35.89	2.29
	3	11 10	28.82	7.23 🗄 🖯	40.03	19.10 띂 응	37.42	3.02 🗄 🖯	35.97	2.93
	4	7	61.30	11.75	78.21	18.86	68.57	5.84	64.8	6.62
	5	LE07	58.46	17.94 🔓	79.38	34.47 🔓	65.89	14.50 🔓	65.21	9.70
	6	Е	131.54	1.88 🗄	139.02	3.04 🗄	132.49	1.60 💾	134.92	2.08
	7		44.23	15.12	65.83	36.41	53.23	16.92	53.94	8.98

Table 6.1 Inter-class spectral separability analysis based on similar pixels criteria with regard of the MLE Composite bands classification.

Built Up	1		6.15	4.59	51.76	7.99	53.86	1.87	51.08	4.2
Other Depots	2		6.69	4.73	40.53	7.45	41.67	1.89	39.45	4.6
	3		7.85	6.66	41.07	9.91	40.45	2.66	38.22	6.4
	4 5		5.50	7.36 14.72	74.71 81.41	15.18	77.08 79.99	5.84	76.62 76.62	9.2 23.5
	6		1.07 3.47	2.97	140.06	27.30 6.43	132.57	14.42 2.25	134.06	23.5
	7		0.19	15.95	75.94	28.17	63.83	18.69	62.54	32.2
Built Up	1		9.50	5.19	53.31	6.99	51.62	3.28	51.90	3.7
Ancillary/Gen.	2		9.73	4.63	42.45	6.58	40.05	2.88	40.10	3.2
	3		1.30	5.43	41.03	9.11	39.01	3.61	38.74	4.4
	4		2.02	10.2	84.12	10.19	70.33	6.80	78.8	8.6
	5		1.03	12.80	75.45	14.07	69.54	12.05	77.45	15.4
	6 7		3.18 6.87	2.78 14.85	137.67 55.98	3.55 17.95	132.80 55.44	1.94 14.38	133.47 57.60	1.9 17.4
Vegetation/	1	-	1.16	5.54	46.50	6.14	49.79	2.41	48.90	3.6
Barren land	2		1.02	4.63	36.17	5.00	38.26	1.96	37.00	2.9
	3		8.81	5.28	33.34	4.91	36.04	2.16	33.69	3.2
	4		5.75	17.16	77.18	22.96	69.32	7.67	78.52	11.4
	5	5	6.58	16.95	60.16	15.29	59.29	8.69	61.92	10.1
	6		0.73	2.34	137.67	3.92	131.20	1.99	131.50	1.9
	7	3	9.58	14.11	41.69	13.08	41.42	9.29	40.03	10.0
Forest	1		5.09	3.98	43.07	3.66	47.35	2.13	45.04	2.2
	2		5.22	3.16	31.09	2.90	35.50	1.61	32.84	1.7
	3		1.91	2.93	25.70	2.74	33.10	1.68	28.81	1.8
	4		9.64	11.51	81.56	10.99	66.56	5.84	73.28	6.9
	5		2.04	9.21	49.35	7.16	51.34	11.46	48.61	5.7
	6 7		9.32 7.68	2.09 7.03	134.26 29.26	2.56 7.44	131.15 36.18	2.41 13.04	130.45 29.82	1.5 5.6
40										
20					140			⊢ _ _⊣		
00					100				⊢	
80		0			80					
60		1				8	H		<u> </u>	
	18H	國		-A-I			REE A	⊢ <u>≜</u> ⊣		
20		*			40 20				⊢_ @	51
0	2	3	20		7 0			4 5		
a)			* 00912	14_20200911_(b) LE	07 L1TP 13604	45_20101217_20	7 200910 02 1	Г1
						~)				
10					14					
10				⊢ ⊕ ⊣	12 10			<u>⊢⊕</u>		
8		_	(The second		10				H-	@1
		F								T
o 🙀	194	H		<u>一</u> 盡一		·	-		E	-
0						10			÷	
٥		1999 (C. 1999)			1	0	- Had-H		H	(2)
0	8		a		0	0		g 84		
0 1	1	3	4	5 6	7	0 1	2 3	8 5		7
c) 1	LE07_L1T	P_136044_2	01112	04_20200909_0	02_11	d) LE	07_L1TP_13604	44_20121206_20	200908_02_1	1.1

09-12-14 ¹	10-12-17 ¹	11-12-04 ¹	12-12-06 ¹	13-10-30 ²		14-12-20 ²	15-12-23 ²	16-12-25 ²	17-11-26 ²	18-12-31 ²
				Reference: L	andsa	at-7 ¹ ,8 ² ,9 ³				

Cover types	Bands	Data	Mean	Std.dev Data	Mean	Std.dev Data	Mean	Std.dev Data	Mean	Std.dev
Built Up	1	-	9,801.85	373.47	9,291.88	569.44	9,343.83	371.16	8,304.07	389.03
Terminal	2	020	8,386.25	481.57	8,552.98	427.26 2	8,814.33	272.22	8,373.83	243.88
	3	-70	8,692.83	482.66 🔨	9,055.04	380.88 🟹	9,508.57	279.62 🟹	9,080.86	198.36
	4	30	9,897.75	167.44 💫	9,932.77	73.28	10,559.09	38.16	10,427.17	83.96
	5	10	11,825.44	1,145.28 🎇	10,564.02	613.92 🎇	11,502.20	668.79	10,391.72	390.44
	6	113	14,831.50	1,806.56 🛨 📇	11,997.25	1,248.39 2 5	14,132.61	1,898.71	10,528.95	1,024.89
	7	_20 2_T	14,255.73	1,695.70	11,498.43	1,347.31 🏹 🖓	13,490.91	1,926.59 🏹 🏹	9,943.86	1,190.32
Built Up	1	045	7,765.94	896.22 4 0	7,860.45	781.21 8 8	7,933,28	488.78 ⁰ 2	7,837.78	441.34
Infrastructure	2	1360	7,790.03	728.78 99 160	7,902.22	599.93 8 6	8,196.12	378.27 % 6	8,105.71	323.85
	3	ì	8,327.65	642.26	8,478.11	513.87	8,958.37	327.59	8,840.21	282.99
	4	2SP	9,561.32	332.35 🔄	9,783.37	260.53 5	10,591.40	151.44 🔄	10,418.41	131.57
	5	-	9,901.12	1,067.47	10,362.26	1,137.62	10,448.89	801.04	10,286.84	955.42
	6	LC08	9,758.70	1,154.11 👸	9,994.02	1,239.57 👸	9,840.92	1,266.90 8	9,752.43	1,283.87
	7	ГC	8,912.82	1,061.76 🖸	8918.49	1,062.30	8,756.10	1,216.09 🗄	8,672.19	1,152.41

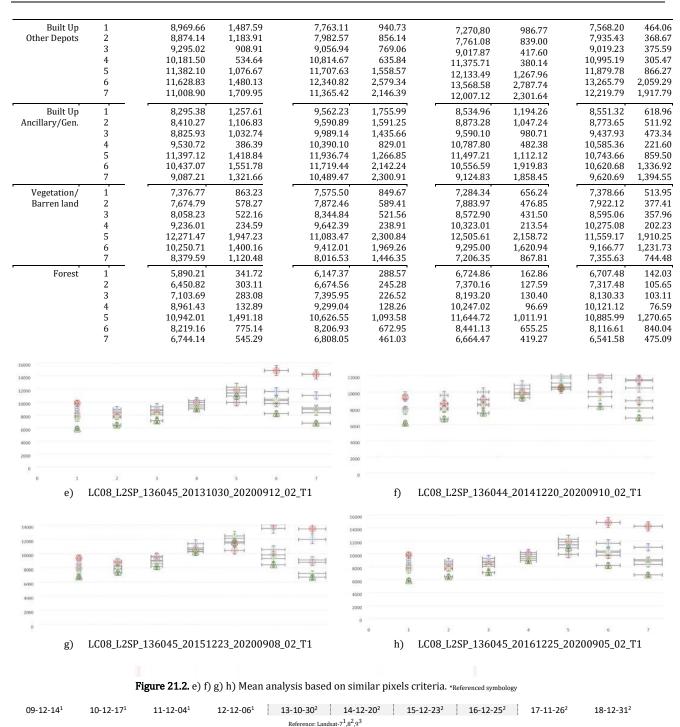
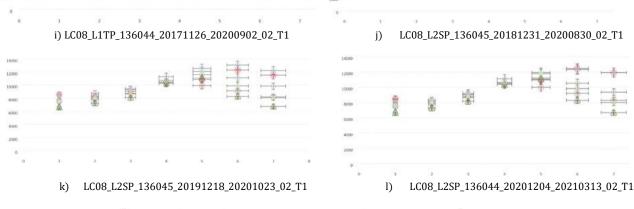
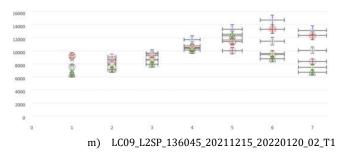


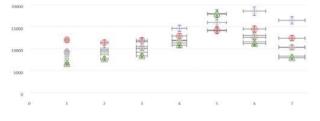
Table 6.3 Inter-class spectral separability analysis based on similar pixels criteria with regard of the MLE Composite bands classification.

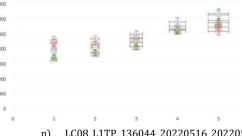
			1 5	V		U		•		
Cover types	Bands	Data	Mean	Std.dev Data	Mean	Std.dev Data	Mean	Std.dev Data	Mean	Std.dev
 Built Up Terminal	1 2 3 4 5 6 7	LC08_L1TP_1 36044_20171	9,108.06 8,326.71 8,877.92 10,143.73 11,578.14 13,912.88 13,144.10	718,89 518.70 491.91 115.50 1,014.18 2,121.47 2,300.25	8,865.64 8,029.7 8,468.56 9,595.8 10,661.84 12,489.64 1,1852.20	525.96 527.25 508.74 121.49 995.81 105.18 1,405.18 1,405.18 1,413.39	483.08 306.64 272.05 49.16 813.03 1,569.28 1,638.77	483.08 306.64 272.05 49.16 813.03 1,569.28 1,638.77 1,638.77	8,443.39 8,224.17 8,994.49 10,504.68 10,939.00 12,447.56 11,916.05	379.82 251.77 231.01 28.09 713.98 1,299.12 1,471.55

Duilt Um	1	7 501 00	664.05	7,392.26	594.34	7 572 50	390.56	7,520.44	336
Built Up Infrastructure	1 2	7,591.00 7,785.98	664.05 485.58	7,392.26	594.34 476.34	7,573.58 7,846.05	390.56 315.95	7,520.44 7,826.32	264
iiii asti uttui e	3	8,521.71	451.65	8,077.62	432.7	8,665.8	292.08	8,685.95	204
	4	10,119.21	251.03	9,475.30	176.28	10,442.68	140.13	1,0534.7	11
	5	10,446.68	1,021.78	9,284.46	867.47	9,948.7	712.68	9,986.37	661
	6	9,955.18	1,366.45	9,180.29	1008.54	9,101.96	867.11	9,206.88	812
	7	8,918.59	1,380.51	8,389.78	941.51	8,178.56	826.05	8,263.10	820
Built Up	1	6.612.78	548.08	6.908.74	635.38	7.700.86	370.11	7.740.43	417.
Other Depots	2	7.196.68	565.34	7,420.38	566.06	8.163.26	329.29	8.167.06	356
• • • • • • • • • • • • • • • • • • •	3	8,820.45	532.01	8,863.16	546.65	9,287.48	369.31	9,222.57	369
	4	11,566.44	606.00	11,023.14	793.35	11,204.03	410.82	1,1102.8	315
	5	13,086.04	1,101.40	12,409.38	1,308.61	12,286.91	1,055.86	11,910.75	1,059
	6	14,930.59	2,289.31	13,444.74	2,501.85	12,538.54	2,364.67	12,319.99	2,443
	7	13,313.01	2,063.28	12,483.74	1,867.49	12,018.3	1,749.77	11,905.19	1,878
Built Up	1	8,615.10	1,282.55	9,163.54	1,212.09	8,480.58	881.96	7,985.44	849
Ancillary/Gen.	2	8,842.09	1,154.54	9,088.47	1,116.88	8,701.04	741.61	8,291.68	719.
57	3	9,399.22	1,098.21	9,448.13	1,050.22	9,383.52	685.12	9,063.37	642
	4	10,353.45	595.33	10,004.49	665.31	10,685.12	341.74	10,639.92	245.
	5	12,009.56	1,374.02	11,430.91	1.364.26	11,517.46	1,253.99	11,217.27	1.167.
	6	11,163.61	1,601.43	11,377.00	1,722.64	10,909.50	1,510.89	10,526.95	1,522.
	7	9,739.41	1,607.33	10,122.98	1,579.26	9,706.35	1,510.58	9,349.02	1,597
Vegetation/	1	6,763.38	580.27	7,139.59	645.08	7,548.43	561.86	7,511.85	481.
Barren land	2	7,459.68	417.37	7,582.01	502.87	8,026.73	411.83	7,979.96	354
	3	8,022.02	384.99	8,032.18	441.12	8,733.32	389.68	8,732.32	326.
	4	9,745.89	225.13	9,333.12	191.02	10,414.3	199.74	10,506.55	16
	5	13,725.01	2.849.32	12,013.24	2.228.21	12,054.66	2,092.23	1,1787.8	1.821.
	6	9,833.86	1,137.78	9,719.39	1,443.02	9,878.72	1,418.55	9,804.85	1,372.
	7	7,497.82	597.56	7,934.19	950.45	8,057.00	999.22	7,979.29	1,060.
Forest	1	6,039.36	214.61	5,742.94	230.46	6,583.36	260,34	6,666.14	213.
	2	6,716.62	171.80	6,325.30	206.37	7,211.11	205.29	7,284.19	167.
	3	7,487.11	177.69	7,026.29	191.91	8,077.43	207.81	8,180.54	175.
	4	9,581.04	135.75	9,023.14	245.62	10,207.74	200.46	10,343.17	170
	5	12,146.66	1,604.27	10,159.49	1,258.02	11,100.08	1,127.84	11,078.75	1,067.
	6	8,516.10	624.04	7,924.53	865.65	8,253.20	846.32	8,296.94	787.
	7	6,673.04	379.75	6,588.96	745.48	6,706.50	742.45	6,689.95	756.
100			Ŧ						
100				34000			1002000		
100		н <u>Т</u> н		11000					
100				0000 1					
120	12			<u>⊢⊕</u> −1	iii	虚 曖			
00				1 8000					
	URV			E000	æ	1920		(4)	
00				4000					
00				1000					
0									
0 1	2	3 4	5 6	7	a)	3 E	40 0.50	4 2	
i) L(08 I.1TP	136044 201711	26_20200902_02	T1	i)	LC08_L2SP_136	045 20181231	20200830 02	T1
т <i>у</i> БС		_100011_201/11	0000_		17	2000_2201_1000		0200000_02_	
4000			- <u>T</u>		14000				
12000				a	12000				ð
					00012				
0000	1901	1	*		10000	- kilos	· · · · ·		1
N001	*	1 CB-1			8000	🖞 🔟 🛣			1

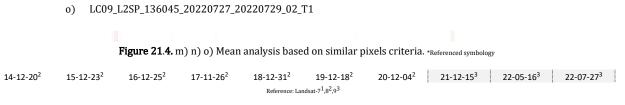


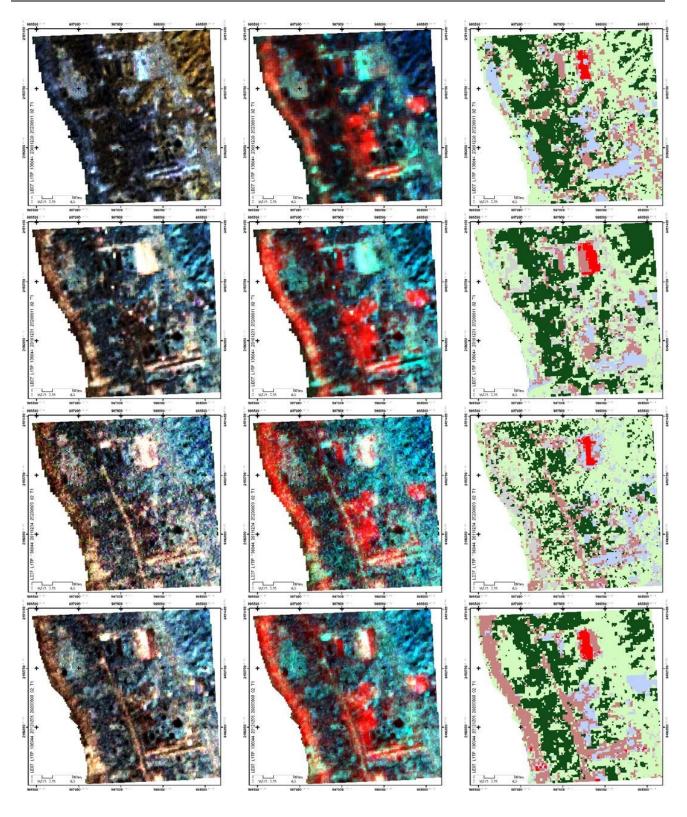

Figure 21.3. i) j) k) l) Mean analysis based on similar pixels criteria. *Referenced symbology

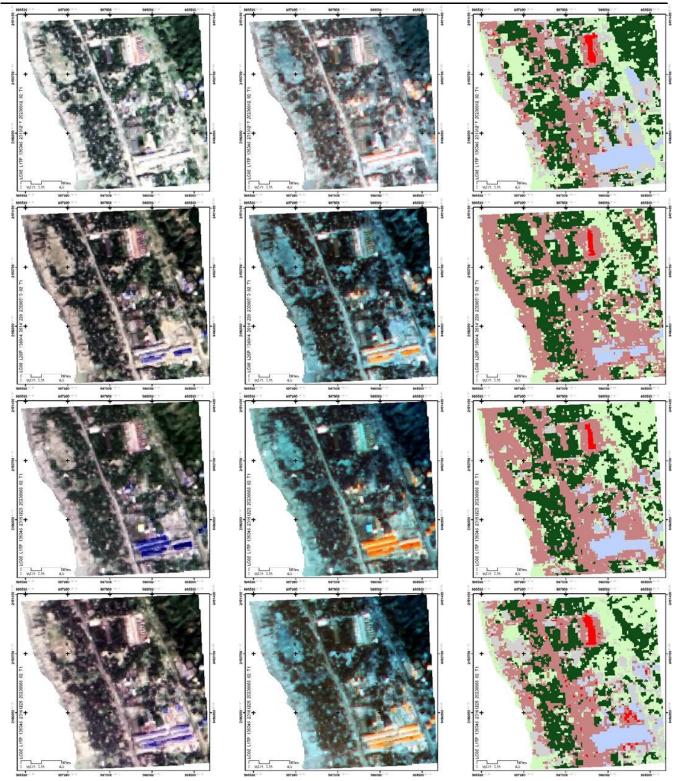

13-10-30 ²	14-12-20 ²	15-12-23 ²	16-12-25 ²	17-11-26 ²	18-12-31 ²	19-12-18 ²	20-12-04 ²	21-12-15 ³	22-05-16 ³
				Reference: Lan	dsat-7 ¹ ,8 ² ,9 ³				


Table 6.4 Inter-class spectral se	parability analysis based on simila	ar pixels criteria with regard of the MLI	E Composite bands classification.

		· ·							
Cover types	Bands Dat	a Mean	Std.dev Data	Mean	Std.dev Data	Mean	Std.dev Data	Mean	Std.dev
Built Up Terminal	2 9 5 5 8 8 7 1 LC09_L2SP_1 36045_20211	9,243.24 8,640.20 9,311.91 10,513.84 11,427.51 13,312.53 12,328.04	533.42 277.15 244.6 11 59.55 10 10 10 10 10 10 10 10 10 10 10 10 10	8,608.79 8,345.53 9,106.43 10,451.47 10,641.92 12,028.19 11,411.58	438.14 201.7 4 196.86 259 551.59 1,695.18 1,694.29	12,025.97 11,416.92 11,927.08 12,917.42 14,240.47 14,525.53 12,437.25	1,294.09 1,034.82 880.43 LL 596.88 0 1,622.74 0 3,307.2 2,808.51	NO DATA NO DATA NO DATA NO DATA NO DATA NO DATA NO DATA	NO DATA NO DATA NO DATA NO DATA NO DATA NO DATA NO DATA


Built Up	1	7,581.01	362.78	7,653.88	365.36		9,207.42	1,244.94	NO DATA	NO DATA
Infrastructure	2	7,826.21	288.81	7,923.75	296.29		9,412.35	943.98	NO DATA	NO DATA
	3	8,650.08	268.35	8,720.69	249.13		10,088.16	868.51	NO DATA	NO DATA
	4	10,422.51	115.33	10,453.04	103.24		11,826.78	494.68	NO DATA	NO DATA
	5	9,996.86	553.80	10,109.68	841.49		14,153.51	2,249.51	NO DATA	NO DATA
	6	9,386.42	626.60	9,351.31	1,185.84		12,603.32	1,520.43	NO DATA	NO DATA
	7	8,344.60	607.41	8,341.26	951.00		10,292.27	1,419.60	NO DATA	NO DATA
Built Up	1	7,518.35	694	7,489.45	584.22		8,708.48	1,656.82	NO DATA	NO DATA
Other Depots	2	8,116.30	659.24	7,992.85	540.56		9,716.28	1,717.56	NO DATA	NO DATA
	3	9,494.87	579.71	9,256.37	489.84		11,657.12	2,038.45	NO DATA	NO DATA
	4	11,684.18	590.89	11,364.99	413.62		14,646.42	2,186.00	NO DATA	NO DATA
	5	13,294.57	1,388.67	12,458.43	1,026.92		18,023.78	4,573.60	NO DATA	NO DATA
	6	14,692.90	3,301.83	13,350.07	2,383.73		18,581.55	6,392.45	NO DATA	NO DATA
	7	13,124.92	2,303.25	12,135.11	1,870.33		16,500.74	5,739.54	NO DATA	NO DATA
Built Up	1	8,905.74	954.39	8,990.89	950.45	-	9,478.47	3,222.40	NO DATA	NO DATA
Ancillary/Gen.	2	9,039.01	825.47	9,087.74	833.56		9,940.63	2,867.39	NO DATA	NO DATA
	3	9,665.44	795.68	9,706.25	792.44		10,504.16	2,671.42	NO DATA	NO DATA
	4	10,774.96	355.02	10,812.29	341.78		11,984.86	1,712.13	NO DATA	NO DATA
	5	11,653.34	1,308.32	11,559.57	1,208.71		15,959.99	4,051.85	NO DATA	NO DATA
	6	11,448.03	1,454.99	11,215.84	1,305.18		13,037.57	3,437.29	NO DATA	NO DATA
	7	10,058.09	1,313.52	9,971.57	1,291.19		10,396.38	3,194.07	NO DATA	NO DATA
Vegetation/	1	7,320.24	598.34	7318.81	551.43	-	7,779.52	1,230.43	NO DATA	NO DATA
Barren land	2	7,927.82	418.94	7888.06	412.13		8,780.85	981.42	NO DATA	NO DATA
	3	8,584.24	421.67	8582.30	391.37		9,241.42	879.27	NO DATA	NO DATA
	4	10,328.32	255.22	10345.85	223.49		11,312.35	589.85	NO DATA	NO DATA
	5	12,520.72	2,728.54	12280.79	2,129.34		17,914.24	5,503.53	NO DATA	NO DATA
	6	9,571.68	1,234.56	9568.39	1,212.70		11,575.09	2,357.34	NO DATA	NO DATA
	7	7,447.64	610.72	7590.80	735.83		8,368.23	1,320.36	NO DATA	NO DATA
Forest	1	6,386.29	199.77	6,600.10	248.90	-	6,626.82	1,015.42	NO DATA	NO DATA
	2	7,098.52	166.49	7,240.54	195.45		7,697.20	927.41	NO DATA	NO DATA
	3	7,938.61	179.64	8,096.59	194.80		8,392.51	888.35	NO DATA	NO DATA
	4	10,106.72	142.91	10,198.97	145.64		10,843.04	515.59	NO DATA	NO DATA
	5	12,294.51	1,514.40	11,230.37	1182.78		17,955.92	4,089.51	NO DATA	NO DATA
	6	8,738.12	726.68	8,208.47	662.65		11,211.65	2,148.59	NO DATA	NO DATA
	7	6,694.35	384.93	6,609.77	447.07		7,929.65	1,484.54	NO DATA	NO DATA

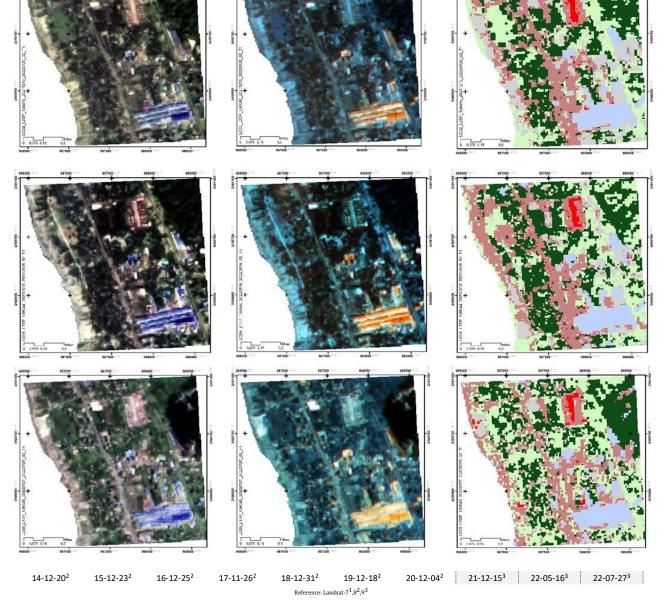




 09-12-14¹
 10-12-17¹
 11-12-04¹
 12-12-06¹
 13-10-30²
 14-12-20²
 15-12-23²
 16-12-25²
 17-11-26²
 18-12-31²


 Reference: Landsat-7¹,8²,9³

 Table 7.2 OLI Landsat 8 mosaic datasets in accordance with an pixel-based method.



09-12-14 ¹	10-12-17 ¹	11-12-04 ¹	12-12-06 ¹	13-10-30 ²	14-12-20 ²	15-12-23 ²	16-12-25 ²	17-11-26 ²	18-12-31 ²
				Reference: Landsa	ıt-7 ¹ ,8 ² ,9 ³				

 Table 7.3 OLI Landsat 8 mosaic datasets in accordance with an pixelt-based method.

13-10-30 ² 14	-12-20 ²	15-12-23 ²	16-12-25 ²	17-11-26 ² Reference: Lands	18-12-31² at-7 ¹ ,8 ² ,9 ³	19-12-18 ²	20-12-04 ²	21-12-15 ³	22-05-16 ³		
Table 7.4 OLI Landsat 8 mosaic datasets in accordance with an pixel-based method.											

2.4. Accuracy kappa

According to a stratified bibliography over Kappa indices of agreement (Aickin M., 1990, Byrt T. et al., 1993, Brennan R. et al., 1981, Cohen J., 1960, 1968, Fleiss J. et al., 1969, Hudson W. D. et al., 1987), during the early stage-framework, we researched the current improvement of its Kappa Coefficient, starting from the premises of a critical witness of certain scientific articles (Pontius R. G. et al., 2011) which underline the implicit K limitations; nonetheless K statistics remains, a commonly accepted statistical-thematic mapping (Olofsson P. et al., 2013), and despite of its cited deprecability, we moved to propose a consistent temporal variance of those classifications versus agreement due to random chance: 1) random distribution of the quantity of each category, and 2) random spatial allocation of the categories. Three fundamental steps demanded us to take a firm position with regard of: 1) a proper picking of certain urban thematic cover types, according to the LA theories already acknowledged and those not yet investigated (Landis J. et al., 1977); 2) gathering a high volume of data, so that the initial premises of final Infrastructure change, would have been respected; consequently the remote-sensed urban investigation is considered as a practical set of applications to the exercise of the profession, without being accounted as a self-referential urban-regeneration project; 3) plotting and analysing the cross labelled results, in agreement with multi-

criterial -scalar parameters. The study has thus accounted a stratified random sample, part of the multinomial sampling methods, by which we indeed accounted fundamental issues, i.e.: (1) which points must be stratified by map category; (2) how to increment quantitively each stratum referring to simple random samplings at once (Stehman S. V. et al., 2019). As rigorously planned, the volume also indicates Kappa distribution across the landscape (Türk G., 1979), so the auxiliary recommendations were included in the decisional process, as: 1) which type of raster combination to start with; 2) the appropriate sampling unit; 3) how many examples to be taken; 4) which would it be the reference ground-truth map to assess the producer percentages. The hierarchy is determined by the dependency of sampling design towards the amount of sample points. In the criteria of a sampling design, the minimum level of accuracy has a significant role in terms of reference pixels for which the scarcity of a weak assigned distribution is a result of inconvenient equations to be nominated.

 $N = 4(p)(q')/E^2$

whereby:

N = total number of points to be sampled P = projected percent accuracy q' = 100 - pE = admissible accuracy

Equation 1. Classification equation. Model number of pixels to sample as reference points for an overall accuracy assessment.

$$PCC = \frac{S_d}{n} 100 \%$$

Equation 2. Attribute data accuracy. The equation relies on three indices as follows.

 S_d = summation of values along diagonal n = total number of sample location

Equation 3. Overall Accuracy (Percentage Correctly Classified).

F

$$PCC = \frac{C_i}{C_t} 100 \%$$

 C_i = properly classified sample location in column C_t = global number of sample location in column

Equation 4. Producers Accuracy. Global number of properly classified pixels depending on each category, is divided by the global number of pixels consisting that category.

$$UA = \frac{R_i}{R_t} \ 100 \ \%$$

 $\begin{array}{l} R_i = properly \ classify \ sample \ location \ in \ row \\ R_t = global \ number \ of \ sample \ location \ in \ row \\ EOC = 100 - user's accuracy \\ \ The \ omission \ error \ is \ 1 - producer's \ accuracy; \\ \ The \ commission \ error \ is \ 1 - user's \ accuracy. \end{array}$

Equation 5. User's Accuracy benchmarks a specific category assuming that probability of classification, for each spatial data unit, transferred to that particular category on ground. EOC is measured according to this accuracy criteria.

2.2.4.5.5.1 Kappa Coefficient

Based on international research, one established on kappa measurement, starting on the premises of the difference between the agreements, occurring between two maps, in the matter of the diagonal entries in the error matrix.

The literature existing on such measurement, also has appreciated its versatility in order to compare numerically and statistically two classification products thanks to: (1) the implementation of an algorithm multiple-choice, (2) the non-entailment of different reference data for validation.

$$K = P_0 - P_c / 1 - P_c$$

$$P_0 = \sum_{i=1}^{m} P_{ii} = 1 / N \sum_{\substack{i=1 \ m}}^{m} N_{ii}$$

$$P_c = \sum_{i=1}^{m} P_i + P + I = 1 / N2 \sum_{i=1}^{m} N_i + N + I$$

$$N_i + N + I = A + B + C + D + E + F = 269$$

$$K = 0.5714 - 0.2196 / 1 - 0.2196 = 0.451$$

$$K = P_0 - P_c / 1 - P_c$$

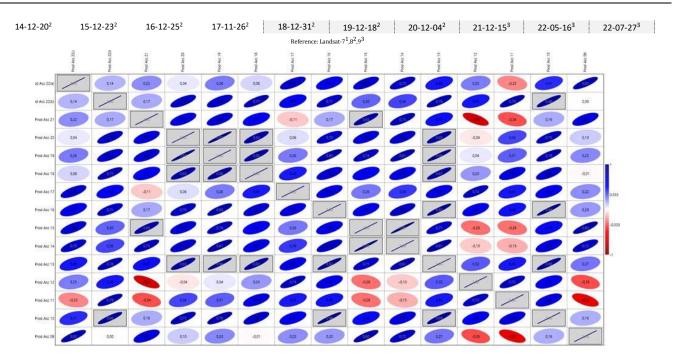

Equation 6. The goal of Kappa coefficient is indeed to measure the agreement between two systems. In remote sensing, one applies this to define and partially to compensate the classification precision of algorithm comparing the output of algorithm with already classified image/dataset (waiting result). The strongest Kappa, hence, identifies the most precise algorithm, however, this case is true, if the classified categories rely on similar cases. Kappa considers all categories as equal sets (that normalize the number of samples).

Table 8.1 Classification accurac	employing OLI Landsat 8 datasets in accordance with an object-	based method.
i ubic oil diassification accurac	chipioying olli lanasat o adasets in accordance with an object	buseu meenou.

Data	Classification method	Cover types	Producer accuracy (%)	User accuracy (%)	Total classification accuracy (%)	Kappa coefficient (%)
LE07_L1TP_13604 5_20091214_2020 0911_02_T1	Object-based method	Built Up Terminal Built Up Infrastructure	0.00 61.11	0.00 45.83	62.06	47.59
5 <u>7</u> 2		Built Up Other Depots	92.85	65.00		
L11 912 02_		Built Up Ancillary/Gen. Vegetation/Barren land	0.00 53.44	0.00 70.45		
LE07_L1TP_13604 5_20091214_2020 0911_02_T1		Forest	68.00	94.44		
-/ -	Object-based method	Built Up Terminal	83.33	33.33	69.82	61.19
11_20		Built Up Infrastructure	70.58	80.00		
121		Built Up Other Depots	80.00	80.00		
10_10		Built Up Ancillary/Gen. Vegetation/Barren land	63.63 63.82	46.66 76.92		
LEU/_LIIF_130 045_20101217_2 0200910_02_T1		Forest	76.00	86.36		
	Object-based method	Built Up Terminal	100.00	46.15	65.21	54.57
36 71 11	object babea memoa	Built Up Infrastructure	66.66	76.19	00121	01107
P_1		Built Up Other Depots	75.00	66.66		
111 111 9_0		Built Up Ancillary/Gen.	72.72	53.33		
20		Vegetation/Barren land Forest	59.61 57.14	79.48 44.44		
LE07_L1TP_136 044_20111204_2 0200909_02_T1		Forest	57.14	44.44		
604 020	Object-based method	Built Up Terminal	100.00	61.53	68.37	58.61
20		Built Up Infrastructure Built Up Other Depots	68.57 61.53	77.41 72.72		
T1 206		Built Up Ancillary/Gen.	50.00	33.33		
02		Vegetation/Barren land	72.22	63.41		
LE0/_LITP_13604 4_20121206_2020 0908_02_T1		Forest	56.52	72.22		
	Object-based method	Built Up Terminal	100.00	85.71	70.53	63.20
T		Built Up Infrastructure Built Up Other Depots	91.66 100.00	89.18 46.66		
310- 02- 02-		Built Up Ancillary/Gen.	45.45	22.72		
201 912		Vegetation/Barren land	30.00	75.00		
LUU8_L25F_130 045_20131030_2 0200912_02_T1		Forest	86.36	100.00		
	Object-based method	Built Up Terminal Built Up Infrastructure	83.33	100.00	90.43	86.98
T.		Built Up Other Depots	$100.00 \\ 100.00$	81.48 100.00		
412		Built Up Ancillary/Gen.	71.42	100.00		
201 910		Vegetation/Barren land	73.07	95.00		
LCU8_LZSP_136 044_20141220_2 0200910_02_T1 0200910_02_T1		Forest	100.00	100.00		
	Object-based method	Built Up Terminal Built Up Infrastructure	62.50 92.68	100.00 71.69	80.87	74.61
L11P_136 0151223_2 08_02_T1		Built Up Other Depots	100.00	90.90		
1117_136 1151223_ 38_02_T1		Built Up Ancillary/Gen.	55.55	55.55		
LCU8_L 045_201 020090		Vegetation/Barren land Forest	56.00 95.45	100.00 91.30		
	Object-based method	Built Up Terminal	100.00	60.00	73.68	67.59
T1	,	Built Up Infrastructure	82.14	69.69		
$122 \\ 122 \\ 02$		Built Up Other Depots	85.71	92.30		
116 05_0		Built Up Ancillary/Gen.	52.17	54.54		
LUU8_LZSP_136 045_20161225_2 0200905_02_T1		Vegetation/Barren land Forest	58.33 89.47	82.35 89.47		
	Object-based method	Built Up Terminal	100.00	90.90	84.61	81.10
LCU8_L11P_136 044_20171126_2 0200902_02_T1		Built Up Infrastructure	100.00	73.68		
711 711 -02		Built Up Other Depots Built Up Ancillary/Gen.	92.85 63.63	100.00 87.50		
LUU8_L11F_130 044_20171126_ 0200902_02_T1		Vegetation/Barren land	85.71	78.26		
.08. 4_2 009		Forest	72.72	100.00		

Data	Classification method	Cover types	Producer accuracy (%)	User accuracy (%)	Total classification accuracy (%)	Kappa coefficient (%)
LC08_L2SP_13604 5_20181231_2020 0830_02_T1	Object-based method	Built Up Terminal Built Up Infrastructure Built Up Other Depots Built Up Ancillary/Gen. Vegetation/Barren land Forest	$100.00 \\ 100.00 \\ 100.00 \\ 88.88 \\ 68.00 \\ 86.95$	100.00 94.60 100.00 61.53 85.00 90.90	89.74	87.17
LC08_L2SP_13604 5_20191218_2020 1023_02_T1	Object-based method	Built Up Terminal Built Up Infrastructure Built Up Other Depots Built Up Ancillary/Gen. Vegetation/Barren land Forest	90.00 88.88 94.11 72.00 48.14 95.00	90.00 72.72 94.11 62.06 86.66 79.16	77,77	73.06
LC08_L2SP_13604 4_20201204_2021 0313_02_T1	Object-based method	Built Up Terminal Built Up Infrastructure Built Up Other Depots Built Up Ancillary/Gen. Vegetation/Barren land Forest	90.00 81.25 94.11 79.16 46.66 95.00	90.00 68.42 94.11 59.37 81.25 82.60	76.92	72.01
LC09_L2SP_136 045_20211215_2 0220120_02_T1	Object-based method	Built Up Terminal Built Up Infrastructure Built Up Other Depots Built Up Ancillary/Gen. Vegetation/Barren land Forest	80.00 96.66 100.00 90.90 79.16 95.65	88.88 93.54 100.00 58.82 100.00 100.00	91.37	89.42
LC08_L1TP_136 044_20220516_2 0220519_02_T1	Object-based method	Built Up Terminal Built Up Infrastructure Built Up Other Depots Built Up Ancillary/Gen. Vegetation/Barren land Forest	100.00 86.48 100.00 85.71 80.00 86.36	90.90 86.48 100.00 63.15 94.11 100.00	88.33	85.52
LC09_L2SP_136 045_20220727_2 0220729_02_T1	Object-based method	Built Up Terminal Built Up Infrastructure Built Up Other Depots Built Up Ancillary/Gen. Vegetation/Barren land Forest	88.88 100.00 100.00 66.66 95.83 95.83	88.88 94.73 100.00 100.00 95.83 95.23	95.68	94.54

Table 8.2 Classification accuracy employing OLI Landsat 8 datasets in accordance with an object-based method.

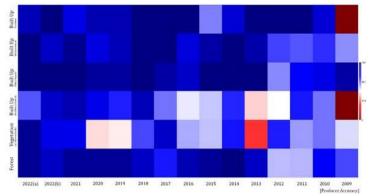
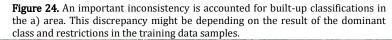



Figure 22. Pearson correlation across Producer values, yearly based. 21-12, 11-09, 09-11 represent the blandest linear bivariation.

Sulft Up

2016

2013

2011

2017

Figure 23. Producer accuracy correspondence matrix correlated. BM Terminal construction stage has performed the lowest percentage value over the set.

Figure 31. BM Terminal. 11/2014.

Figure 33. BM Terminal. 11/2016.

Figure 32. BM Terminal. 11/2015.

Figure 34. BM Terminal. 06/2017 (*et similia). Figure 35. BM Terminal. 12/2018. Figure 36. BM Terminal. 11/2019.

*Google uses its own custom projection.

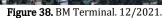


Figure 39. Steel Industry. 04/2009.

Figure 46. Coastal sampling 01. 03/2011.

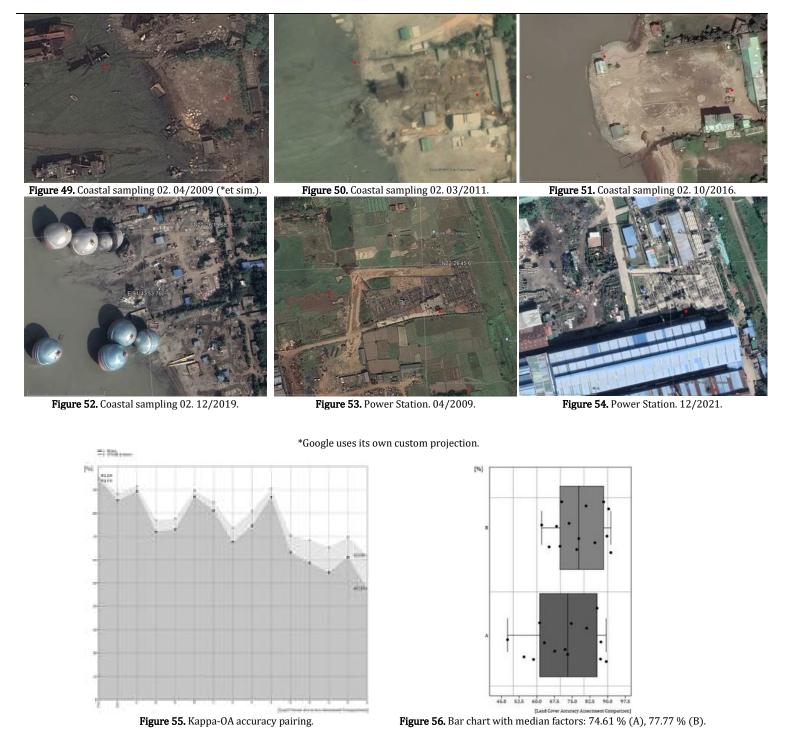


Figure 47. Coastal sampling 01. 01/2013.

Figure 48. Coastal sampling 01. 10/2016.

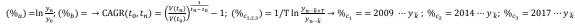
*Google uses its own custom projection.

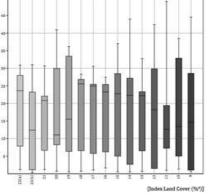
2.5. Annual change rate

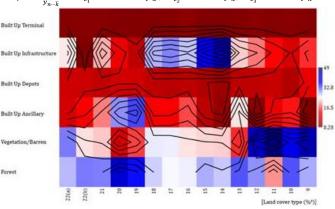
The vegetative/barren land decreased constantly, partially depending on inland fishery, followed by MLE indication of the infrastructural cover type, determined by the allocation of its equipment, so that the shores became temporarily occupied with infrastructural and generic built-up cover category land.

The intrusion of monsoon did not significantly impact on the industrial sector, so that we comprehend across the Producer and User indexation, overall higher values, in constant margins, included in the a) class.

The visual natural barrier mangroves, disrupted by the local inhabitants together with the release of toxic waters, derived from the heavy industries, so that this systemic driver is decreasing, year by year. Roads and other minor paths of communication have been all clearly computed in a distinguishable way and do not manifest alterations.


Data	Classification method	Cover types	Index (% ^a)	Area (mq)	Change year (% ^b)	Annı	ual change rate (%	oc)
LE07_L1TP_136 045_20091214_ 20200911_02_T	Object-based method	Built Up Terminal Built Up Infrastructure Built Up Other Depots Built Up Ancillary/Gen. Vegetation/Barren land Forest	1.04 14.68 10.55 0.55 44.58 28.57	38,476.18 539,103.73 387,423.52 20,411.00 1,636,893.23 1,049,145.62	N/A	N/A	N/A	N/A
LE07_L1TP_13604 5_20101217_2020 0910_02_T1	Object-based method	Built Up Terminal Built Up Infrastructure Built Up Other Depots Built Up Ancillary/Gen. Vegetation/Barren land Forest	1.33 8.87 5.00 13.42 38.48 32.88	49,056.64 325,961.85 183,334.18 493,057.78 1,412,859.00 1,207,475.41	24.59 -50.38 -74.66 -22.55 -14.71 14.05	24.60 -50.38 -74.66 319.45 -14.71 14.05	N/A	N/A
LE07_L1TP_136 044_20111204_2 0200909_02_T1	Object-based method	Built Up Terminal Built Up Infrastructure Built Up Other Depots Built Up Ancillary/Gen. Vegetation/Barren land Forest	0.95 12.64 7.24 10.71 49.00 19.43	34,895.16 464,308.62 266,152.23 393,580.31 1,798,890.27 713,683.37	-33.64 35.41 37.01 -127.89 -14.37 -52.60	-4.50 -7.48 -18.82 148.45 4.72 -20.27	N/A	N/A
LE07_L1TP_13604 4_20121206_2020 0908_02_T1	Object-based method	Built Up Terminal Built Up Infrastructure Built Up Other Depots Built Up Ancillary/Gen. Vegetation/Barren land Forest	1.49 18.21 6.49 1.49 42.44 29.84	54,912.48 667,458.85 238,144.91 54,913.21 1,555,024.00 1,093,451.81	45.00 36.51 -10.93 -197.24 -14.37 42.90	11.98 7.18 -16.19 33.22 -1.63 1.45	N/A	N/A
LC08_L2SP_136 045_20131030_2 0200912_02_T1	Object-based method	Built Up Terminal Built Up Infrastructure Built Up Other Depots Built Up Ancillary/Gen. Vegetation/Barren land Forest	$\begin{array}{c} 0.68\\ 22.21\\ 6.51\\ 23.35\\ 14.48\\ 32.74\end{array}$	25,176.04 814,011,88 238,571.81 855,576.46 530,794.28 1,199,789.06	-78.44 19.85 0.30 275.18 -107.53 9.61	-10.62 10.35 -12.06 93.71 -28.11 3.40	N/A	N/A
LC08_L2SP_136 044_20141220_2 0200910_02_T1	Object-based method	Built Up Terminal Built Up Infrastructure Built Up Other Depots Built Up Ancillary/Gen. Vegetation/Barren land Forest	0.53 44.00 3.30 2.66 22.30 27.19	19,443.17 1,611,302.25 121,222.90 97,772.71 816,831.71 996,156.46	-24.92 68.36 -67.94 -217.22 43.18 -18.57	-13.48 21.95 -23.24 31.52 -13.85 -1.00	N/A	N/A
LC08_L2SP_13604 5_20151223_2020 0908_02_T1	Object-based method	Built Up Terminal Built Up Infrastructure Built Up Other Depots Built Up Ancillary/Gen. Vegetation/Barren land Forest	0.52 37.04 5.00 6.21 22.72 28.49	19,166.79 1,357,335.65 183,399.25 227,607.31 832,368.05 1,043,815,83	-1.90 -17.22 41.55 84.78 1.86 4.67	-11.55 15.42 -12.44 40.39 -11.23 -0.01	$\begin{array}{r} -1.90\\ -17.21\\ 41.55\\ 84.78\\ 1.86\\ 4.67\end{array}$	N/A
LC08_L2SP_136045 _20161225_202009 05_02_T1	Object-based method	Built Up Terminal Built Up Infrastructure Built Up Other Depots Built Up Ancillary/Gen. Vegetation/Barren land Forest	1.65 27.48 6.23 15.92 23.29 25.40	60,602.78 1,007,018.44 228,368.17 583,189.80 853,482.08 930,574.33	115.47 -29.85 -7.67 94.14 2.47 -11.48	6.59 8.95 -7.52 48.07 -9.27 -1.68	56.78 -23.53 31.77 89.46 2.17 -3.40	N/A ‰


Table 9.1 Classification areal percentage employing OLI Landsat 8 datasets in accordance with an object-based me	thod.
--	-------


 $(\%_{a}) = \ln \frac{y_{n}}{y_{0}}; (\%_{b}) = \rightarrow \text{CAGR}(t_{0}, t_{n}) = \left(\frac{V(t_{n})}{V(t_{0})}\right)^{\frac{1}{t_{n} - t_{0}}} - 1; \ (\%_{c_{1,2,3}}) = 1/\text{T} \ln \frac{y_{n \cdots \bar{k} + T}}{y_{n \cdots \bar{k}}} \rightarrow \%_{c_{1}} = 2009 \cdots y_{\bar{k}}; \ \%_{c_{2}} = 2014 \cdots y_{\bar{k}}; \ \%_{c_{3}} = 2017 \cdots y_{\bar{k}}$

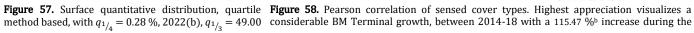
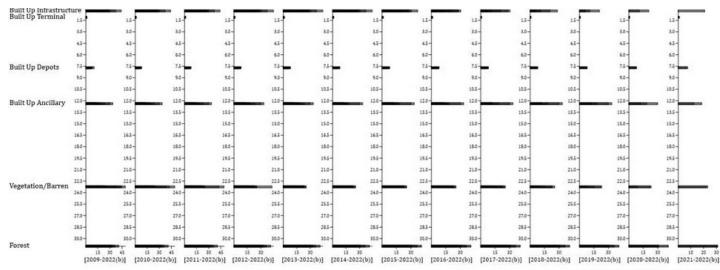

Data	Classification method	Cover types	Index (% ^a)	Area (mq)	Change year (% ^b)	Annu	ual change rate (%	b ^c)
LC08_L1TP_13604 4_20171126_2020 0902_02_11	Object-based method	Built Up Terminal Built Up Infrastructure Built Up Other Depots Built Up Ancillary/Gen. Vegetation/Barren land Forest	$1.03 \\ 30.55 \\ 5.77 \\ 12.23 \\ 25.45 \\ 24.94$	37,958.48 1,119,372.75 211,378.88 448,294.47 932,376.15 913,980.11	-47.12 10.59 -7.67 -1.89 8.86 -1.82	-0.12 9.16 38.77 38.77 -7,00 -1.69	22.14 -12.16 18.62 50.85 4.40 -2.87	N/A
LC08_L2SP_13604 5_20181231_2020 0830_02_T1	Object-based method	Built Up Terminal Built Up Infrastructure Built Up Other Depots Built Up Ancillary/Gen. Vegetation/Barren land Forest	0.72 28.35 6.56 12.00 25.57 26.84	26,275.09 1,040,949.26 239,652.88 440,299.88 938,830.82 985,275.21	-35.80 -7.47 12.83 -1.89 0.47 7.34	-4.08 7.31 -5.27 34.25 -6.17 -0.69	7.65 -10.98 17.17 37.66 3.42 -0.32	-35.80 -7.47 12.83 -1.89 0.47 7.34
LC08_L2SP_13604 5_20191218_2020 1023_02_T1	Object-based method	Built Up Terminal Built Up Infrastructure Built Up Other Depots Built Up Ancillary/Gen. Vegetation/Barren land Forest	0.50 6.33 8.00 33.45 15.52 36.21	$18,331.46\\232,430.09\\293,492.64\\1,227,848.96\\569,851.54\\1,329,223.06$	-36.46 -150.00 19.84 102.51 -54.15 29.94	-7.32 -8.41 -2.76 41.07 -10.55 2.36	-1.16 -38.77 17.71 50.63 -7.24 5.72	-36.13 -78.70 16.33 50.30 -24.72 18.64
LC08_L2SP_13604 4_20201204_2021 0313_02_T1	Object-based method	Built Up Terminal Built Up Infrastructure Built Up Other Depots Built Up Ancillary/Gen. Vegetation/Barren land Forest	$\begin{array}{c} 0.74 \\ 11.04 \\ 8.24 \\ 29.98 \\ 9.03 \\ 40.96 \end{array}$	27,260.78 405,301.00 302,763.46 1,100,732.87 331,502.95 1,503,810.80	39.20 55.62 2.95 -10.95 -54.15 12.32	-3.09 -2.59 -2.24 36.34 -14.51 3.27	5.56 -23.04 15.25 40.37 -15.06 6.82	-11.02 -33.92 11.87 29.88 -34.53 16.53
LC09_L2SP_1360 45_20211215_202 20120_02_T1	Object-based method	Built Up Terminal Built Up Infrastructure Built Up Other Depots Built Up Ancillary/Gen. Vegetation/Barren land Forest	$ \begin{array}{r} 1.17\\ 20.83\\ 6.65\\ 18.57\\ 22.08\\ 30.69 \end{array} $	42,846.43 763,103.03 243,818.30 680,315.35 808,852.16 1,124,502.70	45.81 63.48 -21.43 -47.89 89.41 -28.86	0.98 2.91 -3.84 29.32 -5.85 0.59	11.31 -10.68 10.00 27.76 -0.14 1.72	3.18 -9.57 3.54 10.44 -3.55 5.18
LC08_L1TP_1360 44_20220516_202 20519_02_T1	Object-based method	Built Up Terminal Built Up Infrastructure Built Up Other Depots Built Up Ancillary/Gen. Vegetation/Barren land Forest	1.11 0.28 7.69 12.39 23.25 30.99	40,506.80 904,837.29 272,250.00 452,313.41 848,564.13 1,131,044.94	-5.26 -430.93 14.53 -40.46 5.16 0.97	0.50 -30.45 -2,43 23.95 -5,00 0.62	9.24 -63.21 10.57 19.23 0.52 1.63	1.49 -93.84 5.74 0.25 -1.80 4.34
LC09_L2SP_1360 45_20220727_20 220729_02_T1	Object-based method	Built Up Terminal Built Up Infrastructure Built Up Other Depots Built Up Ancillary/Gen. Vegetation/Barren land Forest	$ \begin{array}{r} 1.17\\23.62\\7.86\\8.47\\30.90\\27.96\end{array} $	43,062.76 865,347.61 288,156.53 310,201.93 1,131,810.651 1,024,285.58	5.26 443.50 2.18 -38.03 28,44 -10.28	0.84 3.39 -2.10 19.53 -2.61 -0.15 %	8.79 -6.91 9.64 12.86 3.62 0.31	2.12 -4.28 5.15 -6.12 3.23 1.9

Table 9.2 Classification areal percentage employing OLI Landsat 8 datasets in accordance with an object-based method.



IQR = 18.785, 2018.

%, 2011. Lowest Median IQR = 10.04 %, 2020, highest 2016; the prosperous vegetation reported in 2011 a 14.37 %^b decrease, despite of the previous years. In the biennial 17-18, BU Depots increased by volume.

[Pre-date fire 2022-05-16 difference (%b)]

Figure 59. Area-based variation over the years. 2022(b) chosen as discriminator.

2.6. MLE ISODATA Cluster

The performance of the latest stage of this research regards an unsupervised classification on a biennial series of 2022 (a) and (b) input raster bands. The MLE has spatially analyzed a final, nearly total, area completed by many internal sprawls. The remaining LULC classes have been visually also interpretated by exclusion of this automatic identification. The Whole Iso cluster-based analysis did not present any error or image patches during the processing nor the achieved result with a set of initial training data that matched positively in accordance with such dual outcome. All pixels are classified to the nearest class until the number of pixels in each class changes by less than pixel variation is reached.

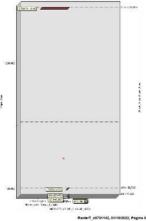
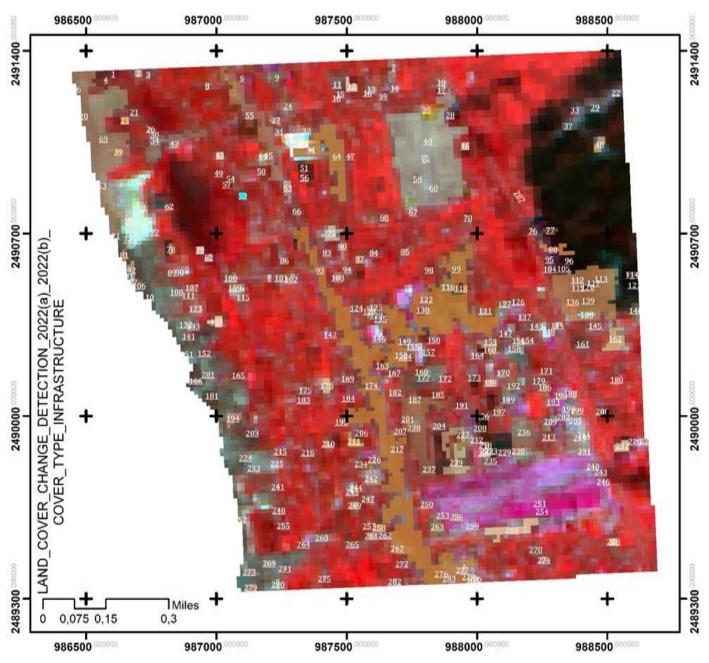



Figure 60. The list of input raster bands reported, over а total area. 2,835,058.22 m², 285 shapes; the lowest is equal to 222.13 m², the highest to 2,793,741.92 m². The residual extension is visually scattered and quantitatively listed as follows below.

	ResterT_x8731142, 01/10/2022, Pagina 1				ResterT x0731142, 61/10/2022, Pegine 2				RasterT_x0731142, 01/10/2022, Pagina 3						RaulerT_s3731142, 01/10/2022, Pagina 4								
OBJECTID *	Shape * Poligono Poligono	1	gndcode 1	Shape Length 63,424364 109,233466	Ohape Area 444,969053 886,534105	08JECTID * 78 77	Shape * Poligano Poligano	M8 76 77	grideode	Shape_Length 59.616243 149.040607	Shape_Ares 222,151026 588,524105	08JECTID * 151 152	Shape * Poligono Poligono	HE 151 152	grideode 0	Shape_Length 59.016243 89.424354	Shape_Area 222,131026 444,262053	OBJECTID * 226	Shape * Polgeno	1d 226	gridsock: 1	Shape_Length 59-034242	Shape_Area 222,171028
3	Poligeno	3		59.616243	222.131024	78	Poligono	78	1	119 232486	666.393079	153	Paligana	152	ő	59.616243	222,131026	227	Polgona	227	1	\$36.545158	4147,820608
4	Poligena	4	1	59.618243	222,131026	79	Poligono	29	1	119.232486	588,524105	154	Poligono.	154	1	80,424364	444,262053	228	Poligono Poligono	228	1	110-232458 178 548729	696,393079 9777,54851
5	Poligene		1	59.616243	222,151026 222,151026	60 01	Poligono	80 81	1	69,616243 119,232436	222,131025	155-	Poligono	155	1	89,424364	444,262053 688,524105	230	Patigono	230	0	149-042637	333,524105
2	Poligona Poligona	÷	0	59.616243 236.464972	1777.06821	82	Poligono Poligono	82	3	110 232505	565.303070	157	Poligono Poligono	157	1	39.616243	222 131026	251	Polipono	251	1	119/232+86	695,253079
	Pulguno		1	59.424364	444,202053	83	Poligono	85	1	80,424364	444,282053	158	Paigana	158	0	59.616243	222,131026	252	Patgone	232	1	206 69635	2221,210263
9	Poligeno	9	1	268,273093	3109 534355	64	Poligono	84	4	50,016243	222,131020	159	Poligono	150	0	89.424364	444,262053	255	Poligono Poligono	233 234	9	10.616242	222,121026
10	Poligeno Poligeno	10	1	59.618243 178.645729	222,131025 1332,756156	85 86	Poligono Poligono	85 85	1	50,016243 50,016243	222,131020	160	Poligono Poligono	160	1	327.889336 206.081215	2887,703342 3331,965394	236	Palicono	226	1	176.848729	1332,786156
12	Poligono	12	1	208.65685	1777.0/8211	87	Poligono	87	1	119 232436	666.393075	162	Poligono	162	1	417,5137	5331,144631	236	Palann	236	÷ .	864 435522	12430.337473
13	Porigono	13	1	59.6162/3	222,131025	00	Poligona	66		417.3157	2007 703542	163	Poligono	163	1	59,616243	222,131026	257	Palgono	257	0	19/616213	222,121026
16	Poligono Poligono	16	1	59.616243 59.616243	222,131026 222,131026	89 90	Poligono Poligono	89 90	1	59,616243 59,616243	222,131026	164	Poligono Poligono	164	1	268,273093 59,616243	1999,179237 222,131026	236	Palgono	256	1	1758-873166	27544,247282
16	Poligono	16	1	59.616243	222,131020	91	Poligono	91	1	89,12135	411,262053	100	Poligono	100	0	119,232456	666.393079	209	Palgono Palgono	229		536 54513E 119 233495	5331,144631 696,263079
17	Poligono	17	1	59.616243	222,131020	92	Poligono	92	0	200 66526	1054.017104	167	Poilgono.	167	1	59,616243	222,131026	241	Palcono	241	÷	59.616243	222.12.006
18	Poligono	18	1	59,616243	222,131026	93	Poligono	93 94	0	00,616243 90,616243	222,131020 222,131020	168	Poligono Poligono	168 169	0	50,616243 50,616243	222,131026	342	Policono	242	î.	236 464372	2443,441289
20	Poligene Poligene	19		59,010243	222,151020	99	Poligono	30	4	80,626265	444,20206/3	170	Poligono	170	-	59.616243	222,131026	243	Palgono	245	1	89.424354	444,282063
21	Poigono	21	1	89.424364	444,262053	36	Poligono	56	3	59.616243	222,151026	171	Poligono	171		59.616243	222,131026	244	Poligono	244	1	59.6152×3 59.0382×3	222,121026
32	Poligene	22	1	178.041729	1554 017184	97	Polignno	97 96	2	59,616243	222 13:026	172	Poisgono	172	1	59,616243 80,424304	222,131028	245	Poligeno Poligeno	245	1	29 03 02 03 02 03 03 03 03 03 03 03 03 03 03 03 03 03	222,131028
23	Poligene	23 24	1	119.232485	898,534105	30	Poligono Poligono	90		59.616243	222 15/028	172	Poligana Poligana	174	0	29 816243	222 131028	247	Palcono	247	÷	59-515243	222.13:026
25	Polgeno	25	1	59 618243	222.131026	100	Poligona	100	1	178.848729	1110.655132	176	Poligono	175		89.424564	646,262053	245	Palgone	246	1	59 6152=2	222,12:006
26	Poligeno	28	1	59.616243	222,131026	101	Poligoru	101	1	89,424564	444,262053	176	Poligano	176	1	208,65685	1554,917184	249	Paligono	249	1	119.232458	888,524105
27 28	Poligeno	27	1	149,040607	805,524105 444,282053	102	Poligeno Poligeno	102	- 2	89,424554 89,424564	444,282053 444,282053	127	Poligono Poligono	177	1	894 243644 119 232486	10218.02721 888.524105	250	Palgono	250	1	59-016243 59-615243	222,131028
29	Poligeno Poligeno	29		587.605579	3554 29642	101	Poligono	101	1	19,616213	222,131028	175	Poligono	175	1	80.424364	444,262053	250	Paligono Paligono	252	0	59 656243	222,13,026
30	Poligeria	30	1	89.424364	444,282053	105	Poligonó	105	3	89,42136	414,282053	100	Poligone	160	1	59,618243	222,131028	253	Palgono	255	1	59.615213	222.12.026
31	Poligeno	31	1	59.010243	222,131028	105-	Poligono Poligono	100	0	149.040607 199.616243	1332 756158 222,131028	101	Poligono Poligono	181	0	178,046729	1110.055132 222.131028	214	Polipeno	224	1	89.424364	444,262065
32	Porigeno Porigeno	32	1	59.616243 298.081215	222,131028 2065,572316	105	Poligono	102	0	59.616243	222,131020	182	Paligano	10.3	4	89.424364	646,262063	256	Polgona	255	1	59/6162=3	222,131026
34	Poligono	34	0	59.6182/3	222,131028	109	Poligono	109	1	178.846720	1110.056122	104	Poligono	164	1	59,616243	222,131026	206 257	Paligono Paligono	206		110-232×98 59-6162×3	898,524105 222,131626
36	Poligono	25	1	59.6162/3	222,131028	110	Poligeno Poligeno	112	0	80,424364 59,616243	444,262053 222 131026	105	Poligono Poligono	185	1	59,616243 149,040007	222,131028 1310,055132	216	Palgono	258	÷	119 232-58	353.524106
36	Poligono	36 37	1	59.6162/3 176.845729	222,131026 1332,786158	112	Poligeno	112	0	119 232436	608 30 30 37 3	187	Poligono	187	ø	59,816243	222,131026	259	Polignno	259	1	89 424384	444,282053
.38	Poligene	38	1	59.6162/3	222,131026	113	Poligono	112	0	59,618243	222,131028	108	Poligono	108	1	59,816243	222,131028	260	Palgono	260	1	178-843729	1551,517154
39	Poligono	39	0	119,232/86	888,824105	114	Poligono Poligono	114	1	149 040607 59.616243	888,524105 222,151028	180	Poligono Poligono	189	0	59.616243 119.232496	222,131028 858,524105	211 262	Poligono Poligono	261 262	1	119-232×MI 89-424354	\$99,524105 444,262063
40	Poligono Poligono	-40	0	59.616243 59.616243	222,131020 222,131020	118	Poligoro.	110	0	119 232436	666.393079	191	Paligono	191	1	50.616243	222,131026	265	Palicono	263	1	357 697-58	3398,258473
42	Poligono	42	1	804,435022	9329.503105	117	Poligono	117	D	59,616243	222,131025	192	Poligano	192	1	1699.062923	19325.399289	264	Palann	264	1	59 618243	222,13:608
43	Poligono	43	1	119,232480	888,524109	115	Poligono	112	0	175 515729 59 51616243	1110.655122 222,131026	193	Paligano Paligano	193		89,424364 238,464972	646,262053 2443,441299	266	Paligono	266	1	176 843729	1777,24821
	Poligono Poligono	44	1	89.424364 59.010243	444,202057	120	Poligono Poligono	120	0	80,424364	444,282063	195	Poligono	195	1	59,616243	222,131026	206 267	Palgono	286	1	£25.973551 19.615253	7774,585628 222,121026
46	Poligene	-26	1	119,232485	848,524105	121	Poligono	121		89,424364	444,26205/3	196	Paligono	196		178,848729	1110.005132	264	Paligono Paligono	268	1	119/232486	100.524105
47	Poligene	.47	1	59.616243	222,131026	122	Proligono	122	\$	80,424304	444,202053 1302 /06158	197	Poligono Poligono	197	1	149,640607 178,848729	1332,786158	269	Palgono	269	6	149 043527	1332,786156
48	Poi geno Poi geno	43	12	208,85685 50.610243	1777.54821 222.131826	123	Poligono Poligono	123		59.010243	222 131626	199	Poligono	199	1	119,232400	858.524105	270	Poliçono	270	1	175 848729	1554,917184
50	Poligene	50	1	50.616243	222 131026	125	Poligona	125	1	59,618243	222,151026	200	Poligono	200		39.616243	222,131926	271	Palgono	271	0	19 616743	222,15:026
51	Polgeno	51	1	(12.424364	444,262053	126	Poligona	128	1	89,424364 149,040607	444,282053 588,524105	201	Peligene	201 202	0	119,232486 59,614243	666,393079 222,131006	272	Poligono Poligono	272		19 6152×3 266 273383	222,121026
52	Poligene	52	0	59 618343 59 618343	222,131026 222,131026	125	Poligono Poligono	128		149.040007	685.524105	202	Poligono	202	0	59,616243	222,131026	274	Palgono	274	i i	119 232-58	353.524108
54	Poligeno Poligeno	54	1	89.424364	444,282053	129	Foligono	129	3	59.616243	222,151025	204	Peligene	264		50.610243	222,131028	275	Polipono	276	1	69-6162+2	222,121026
55	Polgeno	55	1	1869,254802	22435,235857	100	Poligoro	130	D	173.848729	1332,756158	205	Poligono Poligono	205	1	59,616243 59,616243	222,131026 222,131026	276	Palgono	276	0	59 6152:3	222,121026
50	Polgene	56 57	1	59.618243 59.618243	222,131026	131	Poligono Poligono	131	P	59,616243 89,42436/	222,131028 411,252057	207	Poligono	207		59.616243	222,101026	277	Poligono Poligono	277	0	140.043037 59.616343	1110,056131 22213:006
50	Poligeno Poligeno	58		59.010243	222,131026	133	Poligono	132	Ď	59.616243	222,131028	208	Poligono	208	1	298.081215	2443.441289	279	Paligono	279	0	149.043837	1332,786166
59	Poligeno	59	1	59.618343	222,151028	134	Poligono	154	1	207-05655	1777.04821	209	Poligono	209	1	208,081215 119,232456	3554,098421 666,393079	280	Palanno	280	0	116 23248	655,252279
60	Poligeno	60	0	59.616243	222,131028	135	Poligono Poligono	135	1	50,616243 327 880X86	222,131020 3331 905395	211	Poligono Poligono	211	1	238,064972	1999.179237	261	Patigona	281	1	5031 553504	174156,724623
61 62	Poligene Poligene	61	0	59.618243 59.616243	222,131026 222,131026	137	Poligeno	137	1	59,676242	222,131026	212	Poligono	212	1	80.424384	444,262053	282 283	Palgono	282	1	69 424354 149 043537	444,262063
63	Poligono	63	1	268,275093	2/43.4/129	136	Poligsno	158	0	178 845729	1110 655431	213	Poligono	213	1	59,616243 50,616243	222,131026	263	Paligono	283	1	16462,853834	385,524105 175927,772835
61	Poligono	61	1	1211,657344	20658.1854/7	109	Poligene Poligene	130	1	2026 95226 178 846729	35543 064209 1777 048211	214	Poligono. Poligono	214	1	50,616243 39,616243	222,131026	265	Palgono	285	0	59,6152+3	222,13:026
99	Poligona Poligona	05		2146,15/745 176,845729	8/ 187,698971 1332,766158	141	Poligono	141	D	178.845729	1332,780158	216	Poligono	216	1	89.424364	444,262063	286	Poligono	286	1	119/232496	595,392079
67	Poligono	67	1	10.424361	4/4,262067	142	Poligoro.	142	1	89,424554	444.262053	217	Poligone	217	0	89.424364 119.232486	444,282053	287	Poligono	267	0	\$4906,559737	2793741.917844
68	Porgono	68	1	59.6182/3	222,131026	145	Poligono Poligono	143	1	89,424354 119,232486	4/4,282053 666.393079	219	Poligono	218		476,929943	6664 751553						
69. 70	Poligeno Poligeno	69 70	1	2364,841696 59,424364	56421,280082 444,282053	145	Poligono	115	1	59,616243	222,131026	220	Poligono	220	1	50,616243	222,131026						
70	Poligene	/1		50.616243	222,131020	115	Poligono	198	1	80,42458/	414,262063	221	Poligono	221	1	59,616243	222,131008						
12	Poligene	12	1	89.424364	444,282067	147	Poligono	147	1	99,616243 99,616243	222,131026	222 223	Poligono Poligono	222 723	0	50,616242 59,616243	222,131028						
-73	Poligono Poligono	/3	0	59.010243 59.010243	222,131026 222,131020	140	Poligono Poligono	142	1	59,616243	222,131020	224	Paligono	224	o	178,848729	1110,055132						
15	Poligene	24	1	50.010243	222,131020 3331,005395	150	Poligono	150	1	80,424304	414,252053	225	Poligono	225	1	39,616243	222,131028						

Table 10. Cluster-based reporting of the infrastructural change.

Figure 61. Target shapefile iso cluster performed. Reference image is the near-infrared (NIR) 3-4-5 2022(b) raster composite, with the near IR band, interpreted as addressed to the unseen matter, that clearly displays zones interested by chlorophyll and its vital health.

3. Conclusions

The persistence and continuity between past, present and future of this coastal fabric of Bangladesh is an example of many other dynamics that occurred along the coasts of the Mediterranean basin. The permanence of those tangible and intangible traces of the heritage consists of a key testimony regarding the safeguarding of urban identity, as this continuous renewal has stratified and superimposed in the form of stratigraphy. The expressed versatility of the installation of industrial landmarks, together with the slum's phenomena, in their dissemination of urban sprawl, the agricultural-forestry fabric, has recently attracted in Bangladesh, international stakeholders linked to the recovery of ships. This coastal activity was reasoned in a cooperation curated and named "The theme of the Mediterranean" (Casamonti M., 2006) was the subject of activities led by the Order of Architects of Naples, with the hope of ratifying a "Charter of Mediterranean cities on architectural quality ("*Carta delle città del Mediterraneo sulla qualità architettonica*"), and discussed the historic shipbuilding of Naples, and its related starting point towards the horizon of this sea and the Atlantic ocean. On the thematic section illustrated by the "Annals of Architecture and

Cities Foundation" ("Fondazione Annali dell'Architettura e delle Città"), the shipbuilding activity was made tangible and has characterized the bond of this Mediterranean capital over the past centuries. The exhibition mentioned in this volume, entitled "The large ships in the port of Naples" was set up on the first floor in the Royal Palace of Naples, and with a wide digression on the coastal landmarks, entitled "Mediterranean Nomadism", unfolded in the same courtyard which took place in 2007. In this exhibition, the connotation of an itinerant and evolving naval coastal landscape was precisely placed, which characterized not only Naples but the entire Italian peninsula; examples of this exhibition have been made known through the images of the "Cantieri Riuniti di Monfalcone", the "Cantiere di Castellamare", the "Cantieri Siciliani di Palermo". The applicability of this analysis on this coastal passage, so rapidly becoming a humanitarian problem of today's industrialized Bangladesh, therefore wants to contribute to the awareness and defence against land consumption, promoting on a sub-regional level, to their annual census, to promote the elevation of those landscape classes, such as rurality, the colour plane, and intangible heritage to contribute to the competent orders, such as the Superintendence and Cultural Heritage. Furthermore, the promotion of our professional order at this event highlighted a role, in the dimension of interior architecture, which was sadly neglected, and that is of the progressivism inaugurated by Italian architects in the Mediterranean, for those buildings more possibly similar to ships, without that European rational obstinacy, but of authentic poetics between man and the infinite spatial dimension of the sea: "Mediterraneanism", labelled between 1928 and 1932, and declared by Le Corbusier on the back of the book "Poesie per Algeri" in which Algiers, Paris, Barcelona and Rome, were the lighthouses of the Mediterranean. Regarding coastal defence in Italy, the Higher Institute for Environmental Protection and Research, (Department of Protection of Inland and Marine Waters, 2022), constantly works with reference to the publication on the effects caused to the coasts, of those potential solid transports and, in general, to soil erosion. The numerical model, with forecast up to 48 hours, "Sistema Idro Meteo Mare" (SIMM), is offered free of charge on this Italian institutional portal, with crucial navigation data, i.e. a Finite Element Model (FEM), aiming at the most congenial forecast for the sea level values in the Venice lagoon.

Acknowledgements

The scope of this quantitative research is aimed to enlighten the modern approach of the image-and remote-sensing applications in favor of sustainable planning of port areas, regarding LULC and Infrastructure change. This crisis object-based urban detection, together with the extensive yearly accuracy and statistical models, intended for finetuned evaluations - specifically: "Valutazione Impatto Ambientale" (VIA) (Environmental Impact Assessment, EIA) and "Valutazione Impatto Strategica" (VAS) (Strategic Environmental Assessment, SEA) - is addressed to the contribution, as novel research, in favor of the Port Authority strategic planning. The authors contributed to this work in different ways: Salvatore Polverino conducted the primary research and wrote the first draft and Antonio Coppola assisted with data orientation and policy-making boundary spanners, also providing critical feedback on the manuscript. The authors also give proper credit as enlisted in the references section. Besides, this research benefitted from a research fund regulated within the Department Training and Internationalization c/o Ordine degli Architetti, Pianificatori, Paesaggisti, Conservatori di Napoli e Provincia Napoli, Italy, whose international commitment was inaugurated by ex-President Arch. Raffaele Sirica (1995-1997) in occasion of the Habitat II program by the second United Nations Conference on Human Settlements, taken place from 3-14 June 1996, in Instanbul, Turkey. The authors express appreciation to the esteemed specialists who have shown their support for the archival initiative and governmental consultation: in-Office President, Prof. Dr. Arch. Lorenzo Capobianco, former President, Prof. Arch. Paolo Pisciotta and President of the Disciplinary Board, Arch. Gennaro Polichetti, and Prof. Dr. Arch. Leonardo Di Mauro, former and honorary President.

Data availability statement

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding authors. Sitakunda images (pp. 20-21-22) are a result from Google street maps and/or other Imagery.

Ethics statements

Studies involving animal subjects: No animal studies are presented in this manuscript. Studies involving human subjects: No human studies are presented in this manuscript. Inclusion of identifiable human data: no potentially identifiable human images or data is presented in this study.

Conflict of Interests

The authors declare no conflict of interest. The numerical conclusions, as well as their numerical processing, have not accountability in the role, design, collection, or interpretation of data but aims at demonstrating adequate and modern methodologies that are derive from three branches in the process of Training and Internationalization at

the Ordine degli Architetti Pianificatori Paesaggisti Conservatori di Napoli e Provincia: architecture of landscape, engineering for the territory and agronomy. The Department does not promote any misconduct, e.g., 95/46/EC and Regulation (EC) No 45/2001 (EC) No 45/2001, by endorsing: the reintroduction of historical components ecologically suitable, a sustainable land use perspective and data extraction techniques without animal experimentation and environmental invasive footprint in accordance with the rigorous Italian legislation for the landscape. No research institution, e.g., university teaching, has ever been involved in the research.

References

- Abdullah, Hasan Muhammad, M. Golam Mahboob, Mehmuna R. Banu, e Dursun Zafer Seker. (May 2013) «Monitoring the Drastic Growth of Ship Breaking Yards in Sitakunda: A Threat to the Coastal Environment of Bangladesh». *Environmental Monitoring and Assessment* 185, fasc. 5: 3839–51. https://doi.org/10.1007/s10661-012-2833-4.
- Acharya, Tri Dev, In Tae Yang, e Dong Ha Lee. (August 2018). «Land Cover Classification of Imagery from Landsat Operational Land Imager Based on Optimum Index Factor». *Sensors and Materials* 30, fasc. 8: 1753. https://doi.org/10.18494/SAM.2018.1866.
- Aickin, M. (1990). Maximum likelihood estimation of agreement in the constant predictive probability model, and its relation to Cohen's kappa. *Biometrics*. Vol. 46, pp. 293–302
- Alam, Shawkat, e Abdullah Faruque. (July 2014). «Legal Regulation of the Shipbreaking Industry in Bangladesh: The International Regulatory Framework and Domestic Implementation Challenges». *Marine Policy* 47: 46–56. https://doi.org/10.1016/j.marpol.2014.01.022.
- Amen, M. A. (2021). The Assessment of Cities Physical Complexity through Urban Energy Consumption. Civil Engineering and Architecture, 9(7), 2517–2527. https://doi.org/10.13189/cea.2021.090735

Aziz Amen, M. (2022). The effects of buildings' physical characteristics on urban network centrality. Ain Shams Engineering Journal, 13(6), 101765. https://doi.org/10.1016/j.asej.2022.101765

- Amen, M. A., & Nia, H. A. (2020). The Effect of Centrality Values in Urban Gentrification Development: A Case Study of Erbil City. Civil Engineering and Architecture, 8(5), 916–928. https://doi.org/10.13189/cea.2020.080519
- Amen, M. A., Afara, A., & Nia, H. A. (2023). Exploring the Link between Street Layout Centrality and Walkability for Sustainable Tourism in Historical Urban Areas. Urban Science, 7(2), 67. https://doi.org/10.3390/urbansci7020067
- Bangladesh University of Engineering and Technology. (October 2012). Air Pollution Reduction Strategy for Bangladesh Final Report, Department of Environment Government of Bangladesh.
- Barua, Uttama, Erik Wiersma, Maruf Billah, e Mehedi Ansary. (2018). «Fire Evacuation Safety in Bangladesh RMG Factories: A Comparison of Standards and Non-Compliance Issues of Means of Escape», Symposium on Safety in Garment Industry, Five Years After Rana Plaza At: Dhaka.
- Byrt, Ted, Janet Bishop, e John B. Carlin. (1993). «Bias, Prevalence and Kappa». *Journal of Clinical Epidemiology* 46, n. 5: 423–29. https://doi.org/10.1016/0895-4356(93)90018-V.
- Brennan, R. and D. Prediger. (1981). Coefficient kappa: Some uses, misuses, and alternatives. *Educational and Psychological Measurement*. Vol. 41, pp. 687–699.
- Casamonti, Marco. (2006). Overview sull'architettura italiana: Sud : learning from south : paesaggi urbani del Mediterraneo. 1. ed. Milano: Motta architettura.
- Bangladesh Forest Department. (December 2016). Climate Resilient Participatory Afforestation and Reforestation Project, Bangladesh Forest Department. Technical Study for Mapping of Potential Greenbelt Zone in the Coastal Regions of Bangladesh, Final Report. Center for Environmental and Geographic Information Services. Bangladesh.
- Cai, Guoyin, Huiqun Ren, Liuzhong Yang, Ning Zhang, Mingyi Du, e Changshan Wu. (Luglio 2019). «Detailed Urban Land Use Land Cover Classification at the Metropolitan Scale Using a Three-Layer Classification Scheme». Sensors 19, fasc. 14): 3120. https://doi.org/10.3390/s19143120.
- Cohen, Jacob. (April 1960) «A Coefficient of Agreement for Nominal Scales». *Educational and Psychological Measurement* 20, n. 1: 37–46. https://doi.org/10.1177/001316446002000104.
- Cohen, Jacob. (1968). «Weighted Kappa: Nominal Scale Agreement Provision for Scaled Disagreement or Partial Credit.» *Psychological Bulletin* 70, n. 4: 213–20. https://doi.org/10.1037/h0026256.
- Congalton, R.G., Oderwald, R.G., Mead, R.A., (1983). Assessing Landsat classification accuracy using discrete multivariate analysis statistical techniques. *Photogramm. Eng. Remote. Sens.* 49 (12), 1671–1678.
- Congalton, Russell G. (2001). «Accuracy Assessment and Validation of Remotely Sensed and Other Spatial Information». *International Journal of Wildland Fire* 10, n. 4: 321. https://doi.org/10.1071/WF01031.
- Department of Sociology, Mangalore University, Mangalagangotri-574199, Karnataka, India, Md. Shohel Mahmud, Vinay Rajath D., Department of Business Administration, Noakhali Science and Technology University, Noakhali-3814, Bangladesh., Mst. Nusrat Jahan, e Department of Food and Nutrition, National College of Home Economics

(University of Dhaka), Dhaka-1207, Bangladesh. (July 2018) «Health Issues of Female Garment Workers: Evidence from Bangladesh». *Journal of Population and Social Studies* 26, fasc. 3: 181–94. https://doi.org/10.25133/JPSSv26n3.013.

- Dipartimento Tutela delle Acque Interne e Marine. (2022). Capitolo 3, "Il CLIMA ONDOSO A LARGO DELLE COSTE ITALIANE". Servizio Difesa delle Coste. APAT Agenzia per la Protezione dell'Ambiente e per I servizi Tecnici.
- Feizizadeh, Bakhtiar, Sadrolah Darabi, Thomas Blaschke, e Tobia Lakes. (June 2022)«QADI as a New Method and Alternative to Kappa for Accuracy Assessment of Remote Sensing-Based Image Classification». *Sensors* 22, fasc. 12: 4506. https://doi.org/10.3390/s22124506.
- Fleiss, J., J. Cohen, and B. Everitt. (1969). Large sample standard errors of kappa and weighted kappa. *Psychological Bulletin*. Vol. 72, No. 5, pp. 323–327.
- Foody, G. (June 2010)«Assessing the Accuracy of Remotely Sensed Data: Principles and Practices: Book Reviews». *The Photogrammetric Record* 25, n. 130: 204–5. https://doi.org/10.1111/j.1477-9730.2010.00574_2.x.
- Foody, Giles M. (2020). «Explaining the Unsuitability of the Kappa Coefficient in the Assessment and Comparison of the Accuracy of Thematic Maps Obtained by Image Classification». *Remote Sensing of Environment* 239: 111630. https://doi.org/10.1016/j.rse.2019.111630.
- Hudson, W.D. and Ramm, C.W. (1987) Correct Formulation of the Kappa Coefficient of Agreement, *Photogrammetric Engineering and Remote Sensing*, 53, 421-422.
- Humayun Kabir K. (2012) «An Investigation into Geospatial Tools for a Multipurpose Cadastre: A Digital Cadastre Prototype for Bangladesh». *LAP LAMBERT Academic Publishing*. ISBN 978-3845472904
- Hussain, Sajjad, Muhammad Mubeen, e Shankar Karuppannan. (June 2022)«Land Use and Land Cover (LULC) Change Analysis Using TM, ETM+ and OLI Landsat Images in District of Okara, Punjab, Pakistan». *Physics and Chemistry* of the Earth, Parts A/B/C 126: 103117. https://doi.org/10.1016/j.pce.2022.103117.
- Islam, Md. Nazrul, e André van Amstel. (2022). a c. di. India II: Climate Change Impacts, Mitigation and Adaptation in Developing Countries. Springer Climate. Cham: Springer International Publishing,. https://doi.org/10.1007/978-3-030-94395-0.
- Islam, Md. Deen, Warren A. Kaplan, Veronika J. Wirtz, e Kevin P. Gallagher. (March 2022): «The Social Costs of Success: The Impact of World Trade Organization Rules on Insulin Prices in Bangladesh upon Graduation from Least Developed Country Status». Asian Development Review 39, fasc. 01: 239–79. https://doi.org/10.1142/S0116110522500093.
- Kuveždić Divjak, Ana, Almin Đapo, e Boško Pribičević. (2020). «Cartographic Symbology for Crisis Mapping: A Comparative Study». *ISPRS International Journal of Geo-Information* 9, n. 3: 142. https://doi.org/10.3390/ijgi9030142.
- Landis, J. Richard, e Gary G. Koch. (1977). «The Measurement of Observer Agreement for Categorical Data». *Biometrics* 33, n. 1: 159. https://doi.org/10.2307/2529310.
- Matlhodi, Botlhe, Piet K. Kenabatho, Bhagabat P. Parida, e Joyce G. Maphanyane. (September 2019). «Evaluating Land Use and Land Cover Change in the Gaborone Dam Catchment, Botswana, from 1984–2015 Using GIS and Remote Sensing». *Sustainability* 11, fasc. 19: 5174. https://doi.org/10.3390/su11195174.
- McNamara, Derek, e William Mell. (January 2022). «Towards the Use of Remote Sensing for Identification of Building Damage, Destruction, and Defensive Actions at Wildland-Urban Interface Fires». *Fire Technology* 58, n. 1: 641–72. https://doi.org/10.1007/s10694-021-01170-6.
- Mohamed, Abdelbaseer A., Rūta Ubarevičienė, e Maarten van Ham. (September 2022). «Morphological Evaluation and Regeneration of Informal Settlements: An Experience-Based Urban Design Approach». *Cities* 128: 103798. https://doi.org/10.1016/j.cities.2022.103798.
- Nippon Koei Co. & Chiyoda U-tech Co.. (January 2018). Data Collection Survey on Computerization of Gas and Power Network Infrastructure in Bangladesh. People's Republic of Bangladesh Ministry of Power, Energy and Mineral Resources.
- Olofsson, Pontus, Giles M. Foody, Stephen V. Stehman, e Curtis E. Woodcock. (2013). «Making Better Use of Accuracy Data in Land Change Studies: Estimating Accuracy and Area and Quantifying Uncertainty Using Stratified Estimation». *Remote Sensing of Environment* 129): 122–31. https://doi.org/10.1016/j.rse.2012.10.031.
- People's Republic of Bangladesh Ministry of Power, Energy and Mineral. (January 2018). Resources Data Collection Survey on Computerization of Gas and Power Network Infrastructure in Bangladesh, Final Report. Japan International Cooperation Agency (JICA).
- Polverino, Salvatore. (2022). «Fire and Explosion Machine Learning Model for the Port of Los Angeles California Safety Code and NFPA for Fire-Break Zoning». *Journal of Mediterranean Cities* 2, fasc. 1: 58–83. https://doi.org/10.38027/mediterranean-cities_vol2no1_5.

- Pontius, Robert Gilmore, e Marco Millones. (August 2011) «Death to Kappa: Birth of Quantity Disagreement and Allocation Disagreement for Accuracy Assessment». *International Journal of Remote Sensing* 32, fasc. 15: 4407– 29. https://doi.org/10.1080/01431161.2011.552923.
- Rahman Kaunain. Reviewed by: Mullard Saul. (2021). Bangladesh: Overview of corruption and anticorruption Focus on ready-made garments (RMG), health, environment, and anticorruption actors.
- Rahman, Md. Ashabur, Mansura Akter, e Wahidul Shemon. (January 2019). «A National and International Regulatory Framework for Establishing Sustainable Shipbreaking Industry in Bangladesh» 3: 87–108.
- Razzaque, M., & Rahman, J. (2019). Bangladesh's Apparel Exports to the EU: Adapting to Competitiveness Challenges Following Graduation from Least Developed Country Status. Commonwealth Secretariat. https://www.researchgate.net/profile/JillurRahman/publication/333092701_Bangladesh%27s_Apparel_Export s_to_the_EU_Adapting_to_Competitiveness_Challenges_Following_Graduation_from_Least_Develope
 - d_Country_Status/links/5cdb239a299bf14d95986c52/Bangladeshs-Apparel-Exports- to-the-EU-Adapting-to-Competitiveness-Challenges-Following-Graduation-from- Least-Developed-Country-Status.pdf Accessed April 2023.
- Rosenfield, G.H., Fitzpatrick-Lins, K., (1986). A coefficient of agreement as a measure of thematic classification accuracy. *Photogramm. Eng. Remote. Sens.* 52 (2), 223–227
- Saini, Varinder, e Reet Kamal Tiwari. (September 2020). «A Systematic Review of Urban Sprawl Studies in India: A Geospatial Data Perspective». *Arabian Journal of Geosciences* 13, n. 17: 840. https://doi.org/10.1007/s12517-020-05843-4.
- Saha, Pritam, Rajib Mitra, Kunal Chakraborty, e Maitreyee Roy. (April 2022). «Application of Multi Layer Perceptron Neural Network Markov Chain Model for LULC Change Detection in the Sub-Himalayan North Bengal». *Remote Sensing Applications: Society and Environment* 26: 100730. https://doi.org/10.1016/j.rsase.2022.100730.
- Stehman, S.V., & Foody, G.M. (2019). Key issues in rigorous accuracy assessment of land cover products. *Remote Sensing of Environment*. https://doi.org/10.1016/j.rse.2019.05.018.
- The Hazardous Wastes and Shipbreaking Waste Management Rules. (2011). Bangladesh Gazette. http://doe.portal.gov.bd/sites/default/files/files/doe.portal.gov.bd/page/5134b0c1_ee8b_4dd6_8bf8_5e 829f18a4aa/Hazardous_waste_and_ship_breaking_waste_management_rules_2011.pdf.
- Thron, Christopher, e Vincent Miller. (2015). «Persistent Confusions about Hypothesis Testing in the Social Sciences». *Social Sciences* 4, n. 2 361–72. https://doi.org/10.3390/socsci4020361.
- Tran, Duy X., Filiberto Pla, Pedro Latorre-Carmona, Soe W. Myint, Mario Caetano, e Hoan V. Kieu. (February 2017)«Characterizing the Relationship between Land Use Land Cover Change and Land Surface Temperature». *ISPRS Journal of Photogrammetry and Remote Sensing* 124: 119–32. https://doi.org/10.1016/j.isprsjprs.2017.01.001.
- Tuhin, Tanvir, N Chowdhury, M Karim, A Hoque, Mohammad Shariful Julfikar, e Bilton Basak. (2020). «ASSESSMENT OF THE ENVIRONMENTAL QUALITY OF SITAKUNDA SHIP BREAKING YARD».
- Türk, Goksel. (1979). «Gt Index: A Measure of the Success of Prediction». *Remote Sensing of Environment* 8, n. 1: 65–75. https://doi.org/10.1016/0034-4257(79)90024-5.
- Uddin Kamal Abu M. & Kaudstaal R. (December 2003). Delineation of the Coastal Zone. Program Development Office for Integrated Coastal Zone Management Plan (PDO-ICZMP).
- Wadud, Zia, Fuad Yasin Huda, e Nizam Ahmed. (September 2014). «Assessment of Fire Risk in the Readymade Garment Industry in Dhaka, Bangladesh». *Fire Technology* 50 https://doi.org/10.1007/s10694-013-0349-2.
- Wang, Ruci, Yuji Murayama, e Takehiro Morimoto. (April 2021)«Scenario Simulation Studies of Urban Development Using Remote Sensing and GIS: Review». *Remote Sensing Applications: Society and Environment* 22: 100474. https://doi.org/10.1016/j.rsase.2021.100474.