DOI: https://doi.org/10.38027/ICCAUA2024IN0353

Qurio-City: Seeking Refuge in Unconventional Habitats

^{*} ¹B.arch Student Noel John Koshy Kunju Koshy ²B.arch Student Vani Goel ³ Professor Pooja Lalit Kumar
 ^{1, 2 & 3} School of Art and Architecture, Bachelor of Architecture 2025, Sushant University, Haryana, India
 E-mail ¹: noeljohnkk@gmail.com , E-mail ²: vanigoel2002@gmail.com , E-mail ³: poojakumar@sushantuniversity.edu.in

Abstract

The project aims to design a regenerative and resilient space centre for urban environments. It explores the concept of architecture as a responsive machine, adapting to urban, socio-economic and environmental dynamics. Drawing inspiration from natural systems, the project involves creating three-dimensional prototypes to analyse ecological infrastructure. In a unique approach, the exploration extends to developing chain prototypes inspired by the collaborative and efficient behaviours observed in weaver ants, further enriching the project's understanding of interconnected ecological systems. These assemblies contribute to the development of a new architectural paradigm that dynamically responds to the ever-changing environment. The envisioned space centre, with its human-centric design, sustainable features, and adaptable technology, becomes a transformative hub within the urban landscape. It is poised to integrate new space exploration technologies, adjust to changes, and symbolise a progressive step towards emergent ecological morphology in architecture. **Keywords:** Adaptive Structure; Parametric Design; Tectonic System; Ecologically Responsive; Prototypical Exploration.

1. Introduction

Architecture plays a significant role in resource consumption and environmental pollution, contributing to the degradation of Earth's ecosystems. This, coupled with other environmental stressors, poses a threat to the habitability of our planet in the future. Therefore, there is a pressing need for sustainable practices in architecture, aiming to maintain productivity over the long term while minimizing environmental impact. The concept of sustainability in architecture extends beyond mere functionality to encompass ecological responsibility(Afara et al., 2024; Amen et al., 2024) . Rather than merely meeting design requirements, architecture should strive to be genuinely sustainable, drawing inspiration from nature's regenerative solutions. Biomimicry, which involves seeking biological analogies for design guidance, offers a promising approach to creating adaptive and environmentally conscious architecture.

Natural organisms have developed efficient forms through processes such as folding, vaulting, ribs, and inflation, demonstrating remarkable efficiency and responsiveness to their environment. By applying biomimicry principles, architects can harness nature's wisdom to design sustainable and ecological structures.

In this paper, we adopt a prototypical approach, emphasizing inclusivity, symbiosis, and sensitivity in the built habitat. By closely observing natural systems and deriving insights from their morphogenesis, we aim to create regenerative and resilient constructs capable of adapting to future changes and incorporating technological innovations. These constructs have the potential to revolutionize our relationship with ecological surroundings, fostering biodiversity, resource efficiency, and adaptability.

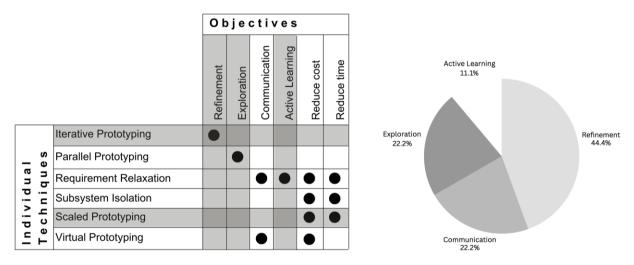
Biomimicry

The evolution of nature as a source of inspiration for innovative applications (Rossin, 2010) is evident in biomimicry, which seeks to imitate natural 'form' (Benyus, 2011). Biomimicry involves investigating the physical shape and structure of organisms to determine key features that contribute to desired functions, guiding the form of engineered solutions. Evolutionary development processes make organisms multifunctionally adapted and optimized (Bajaj, 2020). Transferring these biological principles accurately into design is crucial in biomimicry, ensuring that engineered solutions effectively emulate the efficiency and adaptability found in nature. By leveraging insights from nature's design principles, architects and designers can create sustainable and innovative structures that harmonize with surrounding ecosystems.

Prototypical Approach

The prototypical approach involves creating inclusive, symbiotic, and sensitive built habitats through careful observation and derivative extractions from the study of systems in nature and their morphogenesis (Otto & Wood, 2001). In nature, forms emerge from the intersections of system parameters and environmental constraints specific to their location.

According to Otto and Wood (2001), a prototype is an artifact that approximates one or more features of a product, service, or system. Physically crafting models by hand aids in testing new limits, understanding


constraints, and approximating the look and performance of the product. Historically, architects like Palladio utilized full-scale wooden prototypes of architectural elements to plan costly stone works (Sass & Oxman, 2006). Similarly, Henry Ford explored multiple prototypes before finalizing the design of the revolutionary Model T (Womack, Jones, & Roos, 2008).

Each prototyping effort necessitates a unique strategy to address a design problem or opportunity. This strategy influences the type of information that can be explored and learned from the prototype (Gero, 1990).

Various objectives drive design prototyping, including refinement, communication, exploration, active learning, testing, timing, and ideation.

- Refinement: Gradually improve the design by validating requirements, revealing critical concerns, reducing errors, identifying performance enhancements, optimizing design features, and refining through simulated use (Gordon & Bieman, 1995; Viswanathan, 2012; Viswanathan & Linsey, 2011; Anderl, Mecke & Klug, 2007; Otto & Wood, 2001).
- Communication: Share information about the design within the team and to users, enhancing design usability (Gordon & Bieman, 1995; Barbieri et al., 2013).
- Exploration: Seek new design concepts, associated with divergence and convergence processes (Lennings et al., 2006).
- Active Learning: Gain new knowledge about the design space or phenomena through hands-on prototyping activities (Telenko et al., 2016).
- Testing: Conduct tests to address specific questions regarding the design (Dahan & Mendelson, 2001; Otto & Wood, 2001).
- Timing: Early prototyping is crucial for innovation, especially during the first 30% of a design project, aiding in testing challenging systems (Rothenberg, 1990; Drezner, 1992; Otto & Wood, 2001).
- Ideation: Explore concepts through prototyping to foster organic learning, discovery, and the generation of new design ideas (Gill, Sanders & Shim, 2011; Kershaw, Hölttä-Otto & Lee, 2011).

Table 1. Mapping between techniques and commonly associated objectives. Relationships are drawn from empirical research, related techniques are indicated with a solid circle (Referenced)

The objective of prototyping in our research is exploration to discover alternative methods of structural systems using arrays of unitary prototypes. We employ scaled prototypes to experiment hands-on and iterate through multiple iterations. Our techniques include iterative prototyping, scaled prototyping, and virtual prototyping, which allows scaling up the prototype to building scale and envisioning it in an urban context. This hybrid approach combines virtual and physical elements, resulting in a mixed prototyping system.

- Iterative Prototyping: Iteration involves sequential testing and refinement of a prototype to gradually achieve requirements (Christie et al., 2012). It proves beneficial for meeting challenging requirements, managing high uncertainty, identifying errors, and simplifying parts (Moe, Jensen & Wood, 2004; Zemke, 2012).
- Scaled Prototyping: Scaled prototypes mimic behaviours of larger or smaller designs through similitude, either geometrically or in terms of complexity (Kempf, 1940). Scaling enables prototyping in cases where full-scale models are impractical, with virtual modelling facilitating large designs with high detail

complexity (Mitchell, 2004). Studies show that prototypes with fewer parts correlate with better design outcomes, as do those with fewer parts added over the course of development.

Resilience and Weaver Ants

Resilience, as an emergent property of complex systems, entails the ability to detect, respond to, and recover from adversity. Biologically Inspired Design offers insights into enhancing system resilience by drawing from natural systems, such as eusocial insect colonies, which exhibit remarkable collective resilience despite individual limitations (Anderson et al., 2002; Crozier et al., 2010).

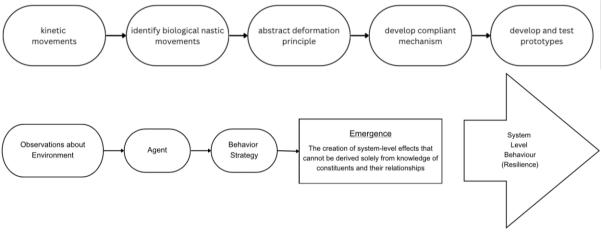


Figure 1. Resilience as an emergent behaviour (Developed by Authors)

Biologically inspired design, an interdisciplinary approach, involves analyzing biological functions and translating them into solutions for human challenges (Helmz, 2009; Chirazi, 2019). This approach seeks to maximize resilience by understanding and applying principles observed in the biological system.

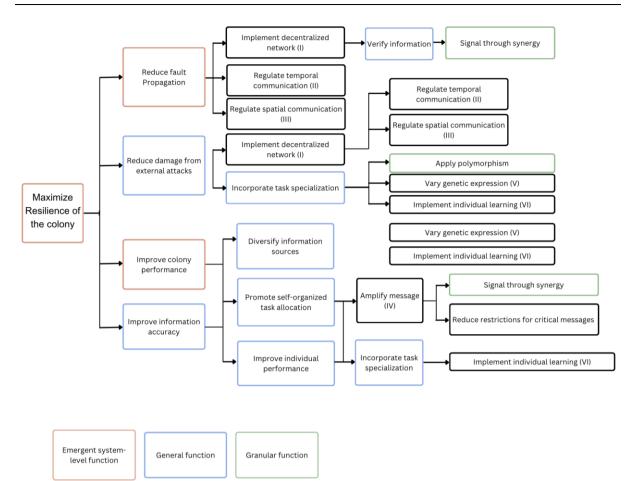


Figure 2. Functional decomposition of eusocial insect colonies resilience (Referenced)

The diagram illustrates insect behaviour aimed at maximizing resilience within the colony, considering it as an emergent property. The system operates within constraints influenced by various factors affecting insect interactions and their environment.

Weaver ants, such as Oecophylla smaragdina, demonstrate complex self-assemblages during nest construction, including bridges, hanging chains, and pulling chains (Hölldobler and Wilson, 1983; Bochynek and Robson, 2014). Worker ants coordinate their efforts to manipulate leaf substrates, forming nest chambers through collaborative pulling and weaving behaviours (Anderson et al., 2001).

These ants utilize two types of chains - pulling chains and hanging or bridging chains - to manipulate leaf surfaces and bridge gaps between substrates (Bochynek and Robson, 2014). These chains represent coordinated efforts by the colony to achieve specific goals in nest construction and maintenance.

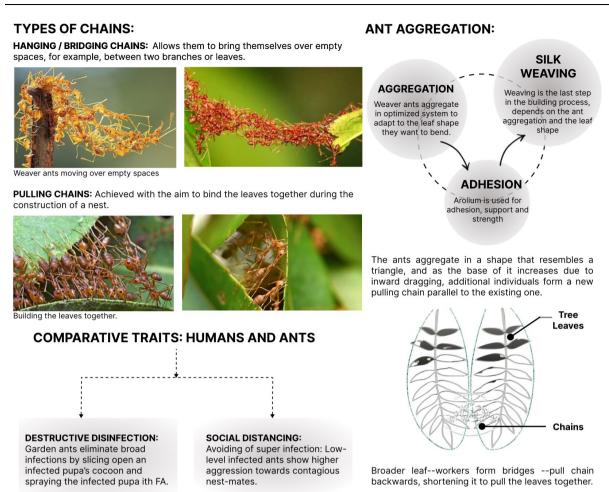


Figure 3. Weaver Ants Study (Developed by Authors)

Weaver Ants vs Humans (Comparative Analysis)

In social insects, advanced coordination emerges from self-organised, distributed mechanisms, contrasting with observed human behaviours that sometimes hinder productivity in teams. Weaver ants demonstrate sustained individual effort and enhanced collective force, even with increasing team sizes, which differs from human teams where additional members often lead to decreased output per member (Deneubourg and Goss, 1989).

Team performance hinges on the synchronicity of individual efforts, with unsynchronized actions potentially hindering overall productivity. Social insect teams exhibit collective behaviours generating resilient outcomes despite relatively simple individual mechanisms (Bonabeau et al., 1997; Theraulaz and Deneubourg, 1994).

Human and social insect teamwork differ fundamentally in control mechanisms. While human teams are typically centrally controlled by a leader, social insect colonies operate under distributed control, with every unit unaware of the overall effort and their relative contribution, which may promote rational decision-making and prevent information overload (Sasaki and Pratt, 2018).

Individual ants exhibit remarkable strength, generating forces up to 80 times their body weight. Longer pulling chains enhance efficiency, with ants at the rear of different-sized chains contributing disproportionately more, suggesting that chain size plays a crucial role in enhancing behaviour efficiency (Feinerman et al., 2018).

Ants respond to local cues using visual observation, chemical sensing of pheromone concentrations, or mechanical sensing of forces within the group, rather than being aware of the global order or exact team size (Lioni et al., 2001; Crozier et al., 2010; Deneubourg and Goss, 1989).

2. Materials and Methods

Three case studies were conducted to provide support our research. The first case study drew inspiration from the Fun Palace by Cedric Price, renowned for its innovative approach to flexible architecture. Price's design aimed to empower users by allowing them unprecedented control over their environment through programmable spaces. The structure, characterized by an unenclosed steel framework, utilized travelling gantry cranes to assemble prefabricated modules, offering unparalleled versatility in spatial arrangement.

The second case study examined The Shed, a concept for a flexible structure capable of housing diverse creative disciplines under one roof. Designed with a telescoping outer shell, The Shed could expand its footprint to accommodate various activities. Its kinetic system, inspired by gantry cranes, facilitated physical transformation based on the needs of artists using the space. The building's movable shell, clad in lightweight Teflon-based polymer, provided thermal insulation while allowing for structural flexibility.

The third case study focused on The One Ocean Building, which drew design inspiration from biomimicry principles, specifically mimicking the opening and closing process of the bird-of-paradise flower. The building's Homeostatic Façade (HS) utilized a self-regulating system akin to muscles in organisms, automatically adjusting to external conditions such as daylight and temperature fluctuations. This innovative approach to façade design exemplifies the integration of biological principles into architectural solutions, contributing to enhanced sustainability and efficiency.

BUILDING AS MACHINE

BUILDING THAT MOVES

Figure 4. Case Studies (Developed by Author)

Structural systems in architecture encompass three basic elements: axial, bending, and curved elements. Drawing inspiration from the intricate behaviour of weaver ants, renowned for utilizing their bodies to construct chains for building nests and navigating their environment, this research seeks to translate their collective intelligence into innovative architectural solutions. Weaver ants exhibit a remarkable ability to aggregate in triangular formations, facilitating the movement of materials and the creation of nest chambers. Structural prototypes have been developed based on the concept of pulling chains extrapolated into unitary elements arrayed into structural chains, forming integral components of building frameworks.

UNITARY PROTOTYPE ITERATIONS



Figure 5. 2D Chain Scaled Prototype Models (Developed by Authors)

By emulating the mechanics of ant aggregation and the dynamics of force exertion observed in nature, the visualized prototypes explore the potential of integrating biomimetic principles into architectural design. Our exploration integrates principles of chain design, emphasizing the alternating pattern of wide and narrow links held together by rivets, into the development of unitary systems inspired by weaver ants. Triangular structures adhere to specific angles between contiguous bars to facilitate efficient force transmission and joint performance. The bending moment, critical in steelwork design, is determined by the force and lever arm, influencing the span of the structure. Moreover, our approach embraces hybrid joints, combining welding and bolting, to enhance the capacity for transmitting forces between separate parts. These principles ensure resilience and adaptability in addressing various structural loads and movements, particularly in dynamic environmental conditions.

Table 2. Iterations of chains and their Properties (Developed by Authors)

FINAL PROTOTYPE BLUEPRINT

PROTOTYPE BLUEPRINT

SINGLE UNIT EXPLODED VIEW

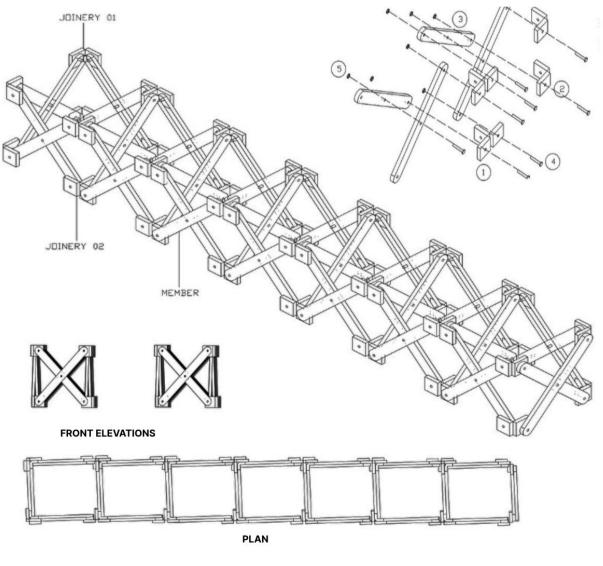


Figure 6. Final Prototype Blueprint (Developed by Authors)

298 ICCAUA2024 Conference Full Paper Proceedings Book <u>www.iccaua.com</u>

3. Results

Through the allocation of an institutional program, we delve into the innovative potential of modular and expandable designs for future space centers. These designs offer flexibility for station expansion, maintenance, and technology upgrades, while also prioritizing environmental considerations. A crucial aspect of the research involved a meticulous culling process to approximate the building's form based on site-specific parameters and institutional typology. This iterative approach yielded a structure intricately woven into the urban fabric of Sector 53, Gurgaon, India, seamlessly integrating functionality with contextual sensitivity.

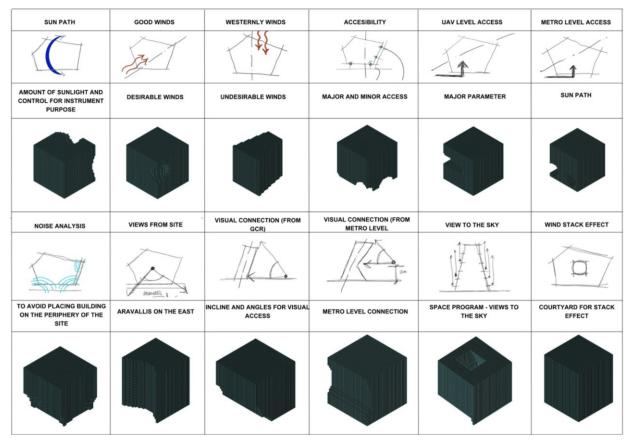


Table 3. Culling Parameters considered on Site (Developed by Authors)

Analysis of the interplay between architectural form and environmental factors, particularly wind dynamics in the case of a high-rise building, revealed significant insights. Simulation and analysis highlighted the influence of building arrangement on local wind patterns, with implications for pedestrian comfort and urban livability. Identifying a pivotal threshold of 3.5 m/s wind speed, the study elucidated strategies for mitigating adverse wind effects through judicious design interventions, such as strategic greenery placement. The concept of the aerodynamic shadow emerged as a key consideration, offering opportunities for integrating recreational and educational amenities within tranquil urban spaces.

This comprehensive analysis underscores the importance of holistic design approaches that consider architectural form, environmental factors, and human experience. By leveraging such insights, architects and urban planners can create spaces that not only fulfil functional imperatives but also enhance well-being within the urban fabric. Scaling up the prototype presents new challenges, particularly in understanding contextual interactions. Considerations for horizontal and vertical movement throughout the building, including staggered floor plates and transfer cores, further highlight the complexities inherent in large-scale architectural design.

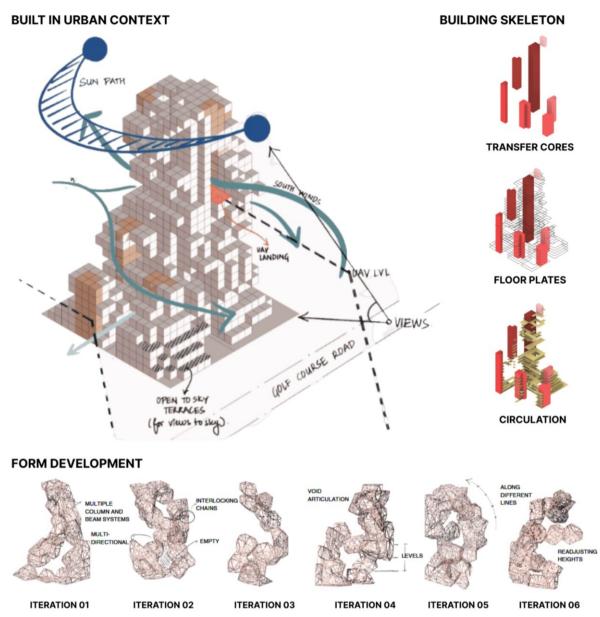


Figure 7. Building Form and Skeleton (Developed by Authors)

4. Discussions

Architects, designers and planners will face increasingly demanding requirements from society and users in the near future. These requirements, including longer spans, heightened actions due to climate change, extended service lives, new materials, and environmental effects, underscore the necessity for performance-based design to address emerging needs.

The structures of the future must not only prioritize safety, economy, and durability but also robustness and resilience, particularly in light of climate change, natural hazards, and urban threats. Addressing these challenges demands innovative solutions, with prototyping serving as a key avenue for experimentation and idea development.

The integration of physical prototyping and virtual analysis offers a comprehensive understanding of how ideas can be translated into reality. The evolution of our building concept, depicted below, from initial sketches to a detailed 3D model and ultimately to a realistic representation on-site, exemplifies this iterative process.

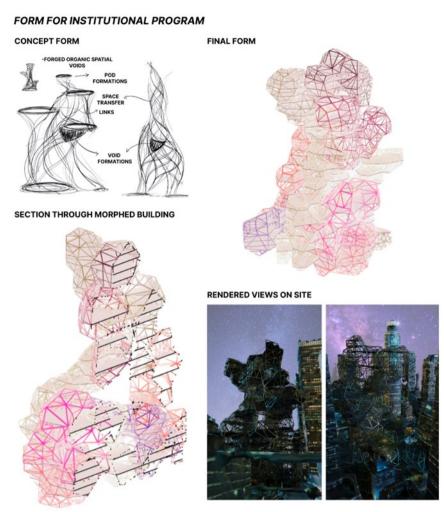


Figure 8. Virtual 3D Model of Building using Rhino, Grasshopper (Developed by Authors)

5. Conclusions

In conclusion, the iterations of models have revealed that the final three-dimensional form is contingent upon various factors including the original geometry, its dimensions, network topology, connections, and the magnitude and direction of forces applied. Maintaining certain parameters while allowing others to vary can lead to novel prototype iterations, with further experimentation refining the design towards optimal outcomes for the project. These variables act as crucial parameters for the structure's development.

Through prototyping, the envisioned building not only adapts the network of chain structure but also accommodates architectural functions and programs, facilitating interaction with both users and the surrounding context.

For future endeavours, it is recommended to engage in a comprehensive exploration of prototype design, experimenting with diverse materials to enhance functionality and longevity. Expanding research efforts to investigate building-level mechanisms would provide valuable insights into practical application and scalability within the architectural domain. Drawing inspiration from biomimicry principles observed in collective organisms could enrich design innovation and efficiency. Additionally, employing Computational Fluid Dynamics (CFD) for structural analysis would contribute to resilience and sustainability. Allocating functional programs beyond institutional frameworks could prompt potential shifts in the building and urban context, necessitating further inquiry.

Acknowledgements

We extend our sincere appreciation to REAL lab (Responsive Ecologies Architecture Lab) and its design director, Amit Gupta, for introducing us to this field and igniting our interest. Prof. Himanshu Sanghani's guidance on the research paper has been invaluable. We are grateful for the continuous support and guidance provided by the professors of REAL lab - Pragya Hotwani, Robin Dwivedi, and Prarthna Mishra. Lastly, we would like to thank the School of Art and Architecture, Sushant University, for providing us with the platform to conduct this project and research.

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of Interests

The Authors declare that there is no conflict of interest.

References

- (2018) Biomimicry: Learning from nature for Sustainable Solutions. https://www.aereshogeschool.nl/onderzoek/lectoraten/biomimicry/biomimicry-learning-from-naturefor-sustainable-solutions
- Anderl, R., Mecke, K. and Klug, L. (2007) (PDF) advanced prototyping with parametric prototypes, Research Gate. https://www.researchgate.net/publication/226719006_Advanced_Prototyping_With_Parametric_Prototy pes
- Afara, A., Amen, M. A., Ayoubi, M. El, Ramadhan, D., & Alani, J. (2024). Arguing Faux Biophilia Concepts in F&B Interior Design: A Case Study Applied in Duhok City. Civil Engineering and Architecture, 12(2), 1091–1103. https://doi.org/10.13189/cea.2024.120231
- Amen, M. A., Afara, A., & Muhy-Al-din, S. S. (2024). The Persuasibility of Globe Thermometer in Predicting Indoor Thermal Comfort Using Non-standard Globe Diameter: Row Houses of Semi-Arid Climates as Case Studies. Civil Engineering and Architecture, 12(1), 425–435. https://doi.org/10.13189/cea.2024.120132
- Anderson, C. and Theraulaz, G. (2002) (PDF) self-assemblages in insect societies, Research Gate. https://www.researchgate.net/publication/215444038_Self-assemblages_in_insect_societies
- Anderson, C., Franks, N. R. and McShea, D. W. (2001). The complexity and hierarchical structure of tasks in insect societies. Anim. Behav. 62, 643–651.
- Bajaj, G. (2021) Comprehensive analysis of application of Biomimicry in architecture to enhance functionality, Academia.edu.https://www.academia.edu/45606848/Comprehensive_analysis_of_application_of_Biomi micry_in_architecture_to_enhance_functionality
- Barbieri, L. et al. (2013) (PDF) mixed prototyping for products usability evaluation, Research Gate. https://www.researchgate.net/publication/236245438_Mixed_Prototyping_for_Products_Usability_Evalu ation
- Bochynek, T. and Robson, S.K.A. (2014) Physical and biological determinants of collective behavioural dynamics in complex systems: Pulling chain formation in the nest-weaving ant oecophylla smaragdina, PLOS ONE. https://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0095112
- Bonabeau, E. et al. (1997) Self-organization in social insects, trends in ecology and Evolution, Research Gate.https://www.researchgate.net/publication/230683295_BONABEAU_E_THERAULAZ_G_DENEUBOUR G_JL_ARON_S_CAMAZINE_S_1997_Self-

organization_in_social_insects_Trends_in_Ecology_and_Evolution_12_188-193

- Camburn, B. et al. (2013) Connecting-design-problem-characteristics-to-prototyping- ..., Connecting Design Problem Characteristics to Prototyping Choices to Form a Prototyping Strategy. https://peer.asee.org/connectingdesign-problem-characteristics-to-prototyping-choices-to-form-a-prototyping-strategy.pdf
- Camburn, B. et al. (2017) Design prototyping methods: State of the art in strategies, techniques, and guidelines: Design science, Cambridge Core. https://www.cambridge.org/core/journals/design-science/article/designprototyping-methods-state-of-the-art-in-strategies-techniques-andguidelines/560B306A5E799AEE54D30E0D2C1B7063
- Charles, C.R. (2017) Chadi Robin Charles Sustainable Solution using biomimicry and ..., Sustainable Solution Using Biomimicry and Architectural Lightweight Membranes. https://repositorium.sdum.uminho.pt/bitstream/1822/56912/1/Dissertação Chadi+Charles 31178.pdf
- Chirazi, J. et al. (2019) What Do We Learn from Good Practices of Biologically Inspired Design in Innovation?, Research https://www.researchgate.net/publication/331105240_What_Do_We_Learn_from_Good_Practices_of_B

iologically_Inspired_Design_in_Innovation Christie E.J. Christie This person is not on ResearchGate, or hasn't claimed this research yet., E.J., Jensen, D. and Buckley, R.T. (2012) ASEE peer - prototyping strategies: Literature review and identification of critical variables, Research Gate. https://peer.asee.org/prototyping-strategies-literature-review-andidentification-of-critical-variables

- Cole, R.J. (2012) (PDF) Regenerative Design and Development: Current Theory and Practice, Regenerative design and development: practice.https://www.researchgate.net/publication/262858134_Regenerative_design_and_development Current theory and practice
- Crozier, R.H. et al. (2010) A masterpiece of evolution–oecophylla weaver ants (hymenoptera: Formicidae), Research Gate. https://www.researchgate.net/publication/228666287_A_masterpiece_of_evolution-Oecophylla weaver ants Hymenoptera Formicidae
- Dahan, E. and Mendelson, H. (2001) [PDF] an extreme-value model of concept testing | semantic scholar, Semantic Scholar. https://www.semanticscholar.org/paper/An-Extreme-Value-Model-of-Concept-Testing-Dahan/bafeeefa92cabc9e7b6c9bb11c92fde006aa2fc9
- Deneubourg, J.L. and Goss, S. (2010) Collective patterns and decision-making, Taylor and Francis. https://www.tandfonline.com/doi/pdf/10.1080/08927014.1989.9525500
- Drezner, J.A. (1992) The nature and role of prototyping in Weapon System Development | Rand, Rand. https://www.rand.org/pubs/reports/R4161.html
- Feinerman, O., Pinkoviezky, I., Gelblum, A., Fonio, E. and Gov, N. S. (2018). The physics of cooperative transport in groups of ants. Nat. Phys. 14, 683–693.
- Garnie, S., Gautrais, J. and Theraulaz, G. (2007) The biological principles of swarm intelligence, Research Gate. https://www.researchgate.net/publication/220058931_The_biological_principles_of_swarm_intelligence
- Gero, J.S. (1990) Design prototypes: A knowledge representation schema for design, Al Magazine. https://www.aaai.org/ojs/index.php/aimagazine/article/view/854
- Gill, C., Sanders, E. and Shim, S. (1970) Prototypes as inquiry, visualization and Communication, The Design Society - a worldwide community. https://www.designsociety.org/publication/30961/Prototypes+as+Inquiry%2C+Visualization+and+Commu nication
- Gordon, V.S. and Bieman, J.M. (1995) [PDF] Rapid Prototyping: Lessons learned | semantic scholar, IEEE.https://www.semanticscholar.org/paper/Rapid-Prototyping:-Lessons-Learned-Gordon-Bieman/1ae8ef443f4685b2526442d77dd268f747a03706
- Hargroves, K.J. and Smith, M.H. (2006) Biomimicry, HarperCollins. https://www.harpercollins.com/products/biomimicry-janine-m-benyus
- Helms, M.E., Vattam, S. and Goel, A.K. (2009) Biologically inspired design: Process and products , Research Gate. Available at:

https://www.researchgate.net/publication/280940035_Biologically_inspired_design_process_and_products

- Holldobler, B. and Wilson, E.O. (1983) The evolution of communal nest-weaving in ants., Arizona State University.https://asu.elsevierpure.com/en/publications/the-evolution-of-communal-nest-weaving-in-ants
- https://core.ac.uk/download/pdf/147232048.pdf
- Ilieva, L. et al. (2022) Biomimicry as a sustainable design methodology-introducing the 'biomimicry for Sustainability' framework, Biomimetics (Basel, Switzerland). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9036301/
- Kempf, G. (1940). The development of ship model testing since 1900. United States Experimental Model Basin, Navy
Yard,DC.Yard,Washington,DC.https://scholar.google.com/scholar?q=Kempf,+G.1940+The+development+of+ship+model+testing+since+
1900.+United+States+Experimental+Model+Basin,+Navy+Yard,+Washington,+D.C.
- Kershaw, T., Otto, K.H. and Lee, Y.S. (2011) (PDF) the effect of prototyping and critical feedback on fixation in engineering design, Research Gate. https://www.researchgate.net/publication/281241897_The_Effect_of_Prototyping_and_Critical_Feedback k on Fixation in Engineering Design
- Lemons, G. et al. (2010) The benefits of model building in teaching engineering design, Research Gate. https://www.researchgate.net/publication/245154362_The_benefits_of_model_building_in_teaching_engineering_design
- Lennings, A. F., Broek, J. J., Horváth, I., Sleijffers, W. & Smit, A. d. (2000) Editable physical models for conceptual design, The Proceedings of the TMCE 2000 Symposium. https://www.semanticscholar.org/paper/EDITABLE-PHYSICAL-MODELS-FOR-CONCEPTUAL-DESIGN-Lennings-Broek/8f75c030a9f2a0db9028a1af6322bf47a1728529
- Lioni, A., Sauwens, C., Theraulaz, G. and Deneubourg, J.-L. (2001). Chain Formation in Oecophylla longinoda. J. Insect Behav. 14, 679–696.

- Mitchell , W.J. (2004) Beyond the Ivory Tower: Constructing complexity in the Digital age | science, Science Org. http://science.sciencemag.org/content/303/5663/1472
- Moe, R.E., Jensen, D.D. and Wood, K.L. (2004) Prototype partitioning based on requirement flexibility | IDETC-CIE | ASME digital collection, Research Gate. https://www.researchgate.net/publication/267619370_Prototype_Partitioning_Based_on_Requirement_ Flexibility
- Mylo, M.D. and Speck, O. (2023) Longevity of system functions in biology and Biomimetics: A matter of robustness and resilience, MDPI. https://www.mdpi.com/2313-7673/8/2/173
- Otto, K.N. and Wood, K.L. (2001) (PDF) product design: Techniques in reverse engineering and new product development, Research Gate. https://www.researchgate.net/publication/239225522_Product_Design_Techniques_in_Reverse_Enginee ring_and_New_Product_Development
- Rossin, K.J. (2010) Biomimicry: Nature's design process versus the designer's process, WIT Transactions on Ecology and the Environment. https://www.witpress.com/elibrary/wit-transactions-on-ecology-and-theenvironment/138/21201
- Rothenberg, J. (1990) Prototyping as modeling: What is being modeled? | Rand, Rand. https://www.rand.org/pubs/notes/N3191.html
- Sasaki, T. and Pratt, S.C. (2018) The psychology of superorganisms: Collective decision making by insect societies, Annual Review of Entomology. https://www.annualreviews.org/content/journals/10.1146/annurev-ento-020117-043249
- Sass, L. and Oxman, R. (2006) The implications of Rapid Prototyping in digital design, Research Gate.https://www.researchgate.net/publication/222706759_Materializing_design_The_implications_of_r apid_prototyping_in_digital_design
- Sommese, F.; Badarnah, L.; Ausiello, G. A critical review of biomimetic building envelopes: Towards a bio-adaptive model from nature to architecture. Renew. Sustain. Energy Rev. 2022, 169, 112850.
- Telenko, C. et al. (2015) (PDF) Designettes: An approach to multidisciplinary engineering design education, Research Gate.

https://www.researchgate.net/publication/282469235_Designettes_An_Approach_to_Multidisciplinary_ Engineering_Design_Education

- Verbrugghe, N., Rubinacci, E. and Khan, A.Z. (2023) Biomimicry in architecture: A review of Definitions, case studies, and design methods, Biomimetics (Basel, Switzerland). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046122/
- Viswanathan, V. and Linsey, J. (2012) Training future designers: A study on the role of Physical Models, SJSU ScholarWorks. https://scholarworks.sjsu.edu/mech_eng_pub/10/
- Viswanathan, V.K. and Linsey, J. (2011) Understanding physical models in design cognition: A triangulation of qualitative and laboratory studies | IEEE conference publication | IEEE xplore, IEEE Xplore. https://ieeexplore.ieee.org/document/6142848/
- VISWANATHAN, V.K.C. (2012) COGNITIVE EFFECTS OF PHYSICAL MODELS IN ENGINEERING IDEA GENERATION, Texas A&M University Libraries.
- Womack, J.P., Jones, D.T.J. and Roos, D. (2007) Machine that changed the world, Google Books. https://books.google.com/books/about/Machine_that_Changed_the_World.html?id=_n5qRfaNv9AC
- Zemke, S. (2012) ASEE peer student learning in multiple prototype cycles, Research Gate. https://www.researchgate.net/publication/344837282_Student_Learning_in_Multiple_Prototype_Cycles